首页 | 本学科首页   官方微博 | 高级检索  
     


Healthcare-Associated COVID-19 across Five Pandemic Waves: Prediction Models and Genomic Analyses
Authors:Thomas Demuyser,Lucie Seyler,Rhea Buttiens,Oriane Soetens,Els Van Nedervelde,Ben Caljon,Jessy Praet,Thomas Seyler,Joost Boeckmans,Jessy Meert,Robin Vanstokstraeten,Helena Martini,Florence Crombé  ,Denis Pié  rard,Sabine D. Allard,Ingrid Wybo
Abstract:Background: Healthcare-associated SARS-CoV-2 infections need to be explored further. Our study is an analysis of hospital-acquired infections (HAIs) and ambulatory healthcare workers (aHCWs) with SARS-CoV-2 across the pandemic in a Belgian university hospital. Methods: We compared HAIs with community-associated infections (CAIs) to identify the factors associated with having an HAI. We then performed a genomic cluster analysis of HAIs and aHCWs. We used this alongside the European Centre for Disease Control (ECDC) case source classifications of an HAI. Results: Between March 2020 and March 2022, 269 patients had an HAI. A lower BMI, a worse frailty index, lower C-reactive protein (CRP), and a higher thrombocyte count as well as death and length of stay were significantly associated with having an HAI. Using those variables to predict HAIs versus CAIs, we obtained a positive predictive value (PPV) of 83.6% and a negative predictive value (NPV) of 82.2%; the area under the ROC was 0.89. Genomic cluster analyses and representations on epicurves and minimal spanning trees delivered further insights into HAI dynamics across different pandemic waves. The genomic data were also compared with the clinical ECDC definitions for HAIs; we found that 90.0% of the ‘definite’, 87.8% of the ‘probable’, and 70.3% of the ‘indeterminate’ HAIs belonged to one of the twenty-two COVID-19 genomic clusters we identified. Conclusions: We propose a novel prediction model for HAIs. In addition, we show that the management of nosocomial outbreaks will benefit from genome sequencing analyses.
Keywords:healthcare-associated COVID-19   prediction modelling   genomic analysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号