首页 | 本学科首页   官方微博 | 高级检索  
检索        


Effect of thromboxane A2 synthetase inhibition, singly and combined with thromboxane A2/prostaglandin endoperoxide receptor antagonism, on inositol phospholipid turnover and on 5-HT release by washed human platelets
Authors:D de Chaffoy de Courcelles  F De Clerck
Institution:Department of Biochemistry, Janssen Research Foundation, Beerse, Belgium.
Abstract:Differential effects on human platelet function of thromboxane A2 (TXA2) synthetase inhibition singly and of TXA2 synthetase inhibition combined with TXA2/prostaglandin endoperoxide receptor antagonism were revealed, using ridogrel as a probe. Ridogrel combines selective TXA2 synthetase inhibition with TXA2/prostaglandin receptor antagonism in one molecule: in washed human platelets, the compound reduces the production of TXB2 (IC50 = 1.3 X 10(-8) M) and increases that of PGF2 alpha, PGE2, PGD2 from 14C]arachidonic acid. Additionally, at higher concentrations (Ki = 0.52 X 10(-6) M), it selectively antagonizes the breakdown of inositol phospholipids, subsequent to stimulation of TXA2/prostaglandin endoperoxide receptors with U 46619. The latter happens in a competitive way with fast receptor association-dissociation characteristics. At low concentrations (1 X 10(-9)-1 X 10(-7) M) producing single TXA2 synthetase inhibition, ridogrel reduces the collagen-induced formation of TXB2 by washed platelets, but enhances 32P]phosphatidic acid (PA) accumulation and 3H]5-hydroxytryptamine (5-HT) release. At higher concentrations (1 X 10(-6)-1 X 10(-5) M) which additionally block U 46619-induced 32P]PA accumulation, ridogrel inhibits the 32P]PA accumulation and release of 3H]5-HT by human platelets stimulated with collagen. These observations, corroborated by results obtained with OKY 1581, sulotroban, indomethacin and human serum albumin, suggest a causal role for prostaglandin endoperoxides in the stimulation by TXA2 synthetase inhibition of platelet reactions to collagen. They reinforce the concept that TXA2 synthetase inhibition-induced reorientation of cyclic endoperoxide metabolism, away from TXA2 into inhibitory prostanoids, requires additional TXA2/prostaglandin endoperoxide receptor antagonism to achieve optimal anti-platelet effects.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号