首页 | 本学科首页   官方微博 | 高级检索  
     


Pyruvate improves cardiac electromechanical and metabolic recovery from cardiopulmonary arrest and resuscitation
Authors:Sharma Arti B  Knott E Marty  Bi Jian  Martinez Rodolfo R  Sun Jie  Mallet Robert T
Affiliation:Department of Integrative Physiology, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699, USA.
Abstract:
Severe depletion of myocardial energy and antioxidant resources during cardiac arrest culminates in electromechanical dysfunction following recovery of spontaneous circulation (ROSC). A metabolic fuel and natural antioxidant, pyruvate augments myocardial energy and antioxidant redox states in parallel with its enhancement of contractile performance of stunned and oxidant-challenged hearts. This study tested whether pyruvate improves post-arrest cardiac function and metabolism. Beagles were subjected to 5 min cardiac arrest and 5 min open-chest cardiac compression (OCCC: 80 compressions min(-1); aortic pressure 60-70 mmHg), then epicardial dc countershocks (5-10 J) were applied to restore sinus rhythm. Pyruvate was infused i.v. throughout OCCC and the first 25 min ROSC to a steady-state arterial concentration of 3.6+/-0.2 mM. Control experiments received NaCl infusions. Phosphocreatine phosphorylation potential (approximately PCr) and glutathione/glutathione disulfide ratio (GSH/GSSG), measured in snap-frozen left ventricle, indexed energy and antioxidant redox states, respectively. In control experiments, left ventricular pressure development, dP/dt and carotid flow initially recovered upon defibrillation, but then fell 40-50% by 3 h ROSC. ST segment displacement in lead II ECG persisted throughout ROSC. Approximately PCr collapsed and GSH/GSSG fell 61% during arrest. Both variables recovered partially during OCCC and completely during ROSC. Pyruvate temporarily increased approximately PCr and GSH/GSSG during OCCC and the first 25 min ROSC and enhanced pressure development, dP/dt and carotid flow at 15-25 min ROSC. Contractile function stabilized and ECG normalized at 2-3 h ROSC, despite post-infusion pyruvate clearance and waning of its metabolic benefits. In conclusion, intravenous pyruvate therapy increases energy reserves and antioxidant defenses of resuscitated myocardium. These temporary metabolic improvements support post-arrest recovery of cardiac electromechanical performance.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号