首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习算法的增强CT检查后对比剂肾病预测模型研究
作者姓名:赵凯  吴静云  张保翠  罗健  张晓东  王霄英
作者单位:100034北京,北京大学第一医院医学影像科
摘    要:【摘要】目的:利用深度学习算法对增强CT检查后发生对比剂肾病(CIN)的风险因素进行分析,并构建CIN的预测模型。方法:从RIS系统中回顾性搜集增强CT检查并建立CIN数据库。检索数据库资料,导出基本信息、基础病史、对比剂注射信息共计18项指标,对患者资料进行筛选、预处理后,建立二分类模型研究队列。经数据处理后利用深度学习方法在整理好的CIN数据集上进行开发和训练。结果:CIN二分类模型对测试集数据预测结果显示CIN阴性分类的精确度、召回率和F1-分数分别为0.982、0.752和0.852,CIN阳性分类的精确度、召回率和F1-分数分别为0.229、0.842和0.359。该模型ROC曲线下面积均为0.89。结论:本研究使用深度学习算法构建了CIN的预测模型,模型对CIN阳性的患者有较高敏感性,但是特异性有待提高。

关 键 词:深度学习  人工智能   体层摄影术,X线计算机   肾病   危险因素
点击此处可从《放射学实践》浏览原始摘要信息
点击此处可从《放射学实践》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号