首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of high Ba(2+) on norepinephrine-induced inhibition of N-type calcium current in bullfrog sympathetic neurons
Authors:Lee H K  Liu L  Elmslie K S
Affiliation:Department of Physiology, Tulane University Medical School, New Orleans, Louisiana 70112, USA.
Abstract:The voltage-dependent inhibition of N-type calcium current by neurotransmitters is the best-understood example of neuronal calcium channel inhibition. One of the mechanisms by which this pathway is thought to inhibit the calcium current is by reducing the permeation of divalent cations through the channel. In this study one prediction of this hypothesis was examined, that high concentrations of divalent cations reduce the maximum neurotransmitter-induced inhibition. Norepinephrine (NE)-induced inhibition was compared in external solutions containing either 2 or 100 mM Ba(2+). Initially, NE dose-response curves were generated by averaging data from many neurons, and it was found that the relationship was right shifted in the high-Ba(2+) external solution without an effect on maximum inhibition. The IC(50) was 0.6 and 3 microM in 2 and 100 mM Ba(2+), respectively. This shift was verified by comparing the effect of NE on single neurons exposed to both 2 and 100 mM Ba(2+). The inhibition induced by 1 microM NE was reduced in 100 mM Ba(2+) compared with that in 2 mM Ba(2+). However, the response to 100 microM NE was identical between high and low Ba(2+). Thus, divalent cations appear to act as a competitive inhibitor of NE binding, which likely results from these ions' interacting with negatively charged amino acids that are important for catecholamine binding to adrenergic receptors. Because the maximum inhibition induced by NE was similar in low and high Ba(2+), the effect of inhibition on single N-type calcium channels was not altered by the divalent cation concentration.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《Journal of neurophysiology》浏览原始摘要信息
点击此处可从《Journal of neurophysiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号