首页 | 本学科首页   官方微博 | 高级检索  
     


Induction of apoptosis and cell cycle arrest by imexon in human pancreatic cancer cell lines
Authors:Robert T. Dorr MD  Mary Ann Raymond  Terry H. Landowski  Nicholas O. Roman  Shoji Fukushima
Affiliation:1. Department of Pharmacology, The University of Arizona, College of Medicine, USA
2. Arizona Cancer Center, The University of Arizona, College of Medicine, 1515 N Campbell Avenue, Tucson, Arizona
4. Division of Hematology and Oncology, The University of Arizona, College of Medicine, USA
5. Department of Pharmaceutics, Kobe Gakuin University, Kobe, Japan
Abstract:
Imexon is an aziridine-containing small molecule currently in Phase I clinical trials. This agent has been shown to bind to thiols and increase intracellular oxidants, inducing apoptosis in hematologic cancer cells. Pancreatic cancers are known to be sensitive to oxidation, suggesting this disease may be an appropriate target for this agent. The current report examines the activity of imexon in pancreatic cells. Imexon induced concentration-dependent and time-dependent apoptosis in a panel of six human pancreatic carcinoma cell (PCC) lines. The mean IC50 (SD) for growth inhibition by the SRB assay was 200 (101) µM for a 48 h exposure with a range of 64–358 µM. Cell killing was schedule-dependent, favoring exposure times ≥48 h. Imexon-treated MiaPaCa-2 cells underwent non-lethal growth arrest following exposure to concentrations ≤200 µM for 48 h. When concentrations were increased to 300 µM for ≥48 h, the MiaPaCa-2 cells arrested in G2 phase and activated caspases 3, 8, and 9 were detected. After a 72 h exposure to the IC80 concentration of imexon, cells exhibited a loss of mitochondrial membrane potential detected by CMXRos staining. However, there was no loss of reduced cellular thiols unless very high concentrations of ≥400 µM were used. In contrast, reactive oxygen species (ROS) were elevated in a dose-dependent fashion, starting at very low imexon concentrations. Imexon also significantly inhibited MiaPaCa-2 tumor growth in SCID mice at 100 mg/kg/d for 9 d. The tumor growth inhibition (% T/C) was 27% of control, and the tumor growth delay was 21 d, indicating an active agent by NCI standards. The levels of imexon that are cytotoxic in human PCC’s are achievable based on the preliminary results of the ongoing Phase I trial. Imexon appears to be active against PCCs in vitro and has an entirely novel mechanism of action involving G2 arrest, accumulation of ROS, and the induction of apoptosis.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号