The chimeric protein tyrosine kinase ETV6-NTRK3 requires both Ras-Erk1/2 and PI3-kinase-Akt signaling for fibroblast transformation. |
| |
Authors: | C Tognon M Garnett E Kenward R Kay K Morrison P H Sorensen |
| |
Affiliation: | Department of Pathology, BC Research Institute for Children's and Women's Health, Vancouver, British Columbia, V6H 3V4. |
| |
Abstract: | There is increasing interest in the potential role of the NTRK family of neurotrophin receptors in human neoplasia. These receptor protein tyrosine kinases (PTKs) are well-known mediators of neuronal cell survival and differentiation, but altered NTRK signaling has also been implicated in mesenchymal, hematopoietic, and epithelial malignancies. We recently identified a novel gene fusion involving one of the neurotrophin receptor genes, NTRK3, in the pediatric solid tumor, congenital fibrosarcoma. In these tumors (and subsequently demonstrated in several other human malignancies), a t(12;15)(p13;q25) rearrangement fuses the 3' portion of the ETV6 gene with exons encoding the PTK domain of NTRK3. The resulting ETV6-NTRK3 fusion protein functions as a chimeric PTK with potent transforming activity. However, previous studies failed to detect interactions between ETV6-NTRK3 and molecules known to link wild-type NTRK3 to its two major effector pathways, namely the Ras-Raf1-Mek1-Erk1/2 mitogenic pathway or the phosphatidylinositol 3'-kinase pathway leading to activation of the AKT survival factor. Therefore, it remains unknown whether ETV6-NTRK3 transformation involves altered NTRK3 signaling. We now report that ETV6-NTRK3 expression in NIH3T3 cells leads to constitutive activation of Mek1 and Akt, as well as to constitutively high expression of cyclin D1. ETV6-NTRK3-induced soft agar colony formation was almost completely abolished by inhibition of either the Ras-Raf1-Mek1-Erk1/2 or the phosphatidylinositol 3'-kinase-Akt pathway. Moreover, this inhibition dramatically reduced expression of cyclin D1. Our results indicate that ETV6-NTRK3 transformation involves a link between known NTRK3 signaling pathways and aberrant cell cycle progression and that Mek1 and Akt activation act synergistically to mediate these effects. |
| |
Keywords: | |
|
|