Matrix metalloproteinase induction in post-transplant obliterative bronchiolitis. |
| |
Authors: | Leena M Eerola Hanni S Alho Paula K Maasilta Kaija A Inkinen Ari L J Harjula Sisko H Litmanen Ulla-Stina Salminen |
| |
Affiliation: | Department of Surgery, Helsinki University Hospital, Helsinki, Finland. |
| |
Abstract: | BACKGROUND: Epithelial cell injury, inflammation, fibrosis, and airway obliteration are associated in post-transplant obliterative bronchiolitis. Fibrosis is a consequence of fibroblastic activity and of collagen deposition after disturbances in the balance of protein formation and degradation. Proteolytic enzymes such as the matrix metalloproteinases mediate degradation. To assess matrix metalloproteinases during obliterative bronchiolitis development, we studied porcine, heterotopic bronchial allografts. METHODS: A total of 119 allografts or autografts were harvested serially at 3 to 60 days after transplantation and processed for histology and in situ hybridization for matrix metalloproteinases 2 and 9. Immunocytochemistry for vimentin and alpha-smooth-muscle-cell actin was performed with specific antibodies. RESULTS: Implants had initial ischemic injury to airway epithelium and to the bronchial wall. Recovery was rapid in autografts and in immunosuppressed allografts. In matrix metalloproteinase-2 mRNA activity in fibroblasts, correlation with endothelial expression and expression in macrophages occurred during intense fibroproliferation. We observed intense matrix metalloproteinase-9 positivity during onset of inflammation and fibroproliferation in endothelial cells (p < 0.01), fibroblasts (p < 0.05), macrophages (p < 0.05), and lymphocytes (p < 0.05). Matrix metalloproteinase-9 mRNA activity in fibroblasts correlated with that in endothelial and inflammatory cells and also proved predictive of early obliteration. CONCLUSIONS: Matrix metalloproteinase-2, and especially matrix metalloproteinase-9, gene activity was associated with onset of inflammation and fibroblastic proliferation in allografts, predicting early obliteration. Although this may be the case in the model described, its role in human-allograft post-transplant obliterative bronchiolitis requires further supportive data. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|