首页 | 本学科首页   官方微博 | 高级检索  
     


Radioligand binding analysis of knockout mice reveals 5-hydroxytryptamine(7) receptor distribution and uncovers 8-hydroxy-2-(di-n-propylamino)tetralin interaction with alpha(2) adrenergic receptors
Authors:Bonaventure P  Nepomuceno D  Hein L  Sutcliffe J G  Lovenberg T  Hedlund P B
Affiliation:Johnson and Johnson Pharmaceutical Research and Development, L.L.C., San Diego, CA 92121, USA.
Abstract:
In the present autoradiographic study, we took advantage of 5-hydroxytryptamine(7) (5-HT(7)) receptor knockout mice to analyze the brain distribution of 5-HT(7) receptor binding sites using [(3)H]5-carboxamidotryptamine (5-CT; a 5-HT(1A/1B/1D/5/7) receptor ligand) and [(3)H]8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; a 5-HT(1A/7) receptor ligand). Low to moderate densities of [(3)H]5-CT (2 nM) binding sites insensitive to pindolol (10 microM, for 5-HT(1A/1B) receptor blockade) and GR-127935 (1 microM; for 5-HT(1D) receptor blockade) were observed in wild-type mice (mainly in thalamus and hypothalamus) but not in 5-HT(7) receptor knockout mice. Surprisingly, moderate to high densities of [(3)H]8-OH-DPAT (10 nM) binding sites insensitive to pindolol (10 microM) remained in 5-HT(7) receptor knockout mouse brain. These non-5-HT(1A), non-5-HT(7) binding sites were found to be adrenergic alpha(2A) receptor binding sites. In alpha(2A) receptor knockout mice low to moderate densities of [(3)H]8-OH-DPAT binding sites insensitive to pindolol but sensitive to the selective 5-HT(7) receptor antagonist SB-269970 (300 nM) were observed mainly in thalamus and hypothalamus. Therefore, in addition to 5-HT(1A) and 5-HT(7) binding sites, [(3)H]8-OH-DPAT also binds to alpha(2A) receptor binding sites in wild-type mouse brain. [(3)H]8-OH-DPAT (in the presence of pindolol and 1 microM RX-821002 for alpha(2) receptor blockade) and [(3)H]5-CT (in the presence of pindolol and GR-127935) bind to a similar receptor binding population corresponding to 5-HT(7) binding sites. Detailed anatomical mapping of 5-HT(7) receptor binding sites in wild-type mouse brain was then performed using both radioligands in the presence of suitable pharmacological agents for non-5-HT(7) receptor binding sites blockade. The mapping revealed binding sites consistent with the mRNA distribution with the highest densities found in anterior thalamic nuclei.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号