首页 | 本学科首页   官方微博 | 高级检索  
检索        


CSGALNACT1‐congenital disorder of glycosylation: A mild skeletal dysplasia with advanced bone age
Authors:Shuji Mizumoto  Andreas R Janecke  Azita Sadeghpour  Gundula Povysil  Marie T McDonald  Sheila Unger  Susanne Greber‐Platzer  Kristen L Deak  Nicholas Katsanis  Andrea Superti‐Furga  Kazuyuki Sugahara  Erica E Davis  Shuhei Yamada  Julia Vodopiutz
Abstract:Congenital disorders of glycosylation (CDGs) comprise a large number of inherited metabolic defects that affect the biosynthesis and attachment of glycans. CDGs manifest as a broad spectrum of disease, most often including neurodevelopmental and skeletal abnormalities and skin laxity. Two patients with biallelic CSGALNACT1 variants and a mild skeletal dysplasia have been described previously. We investigated two unrelated patients presenting with short stature with advanced bone age, facial dysmorphism, and mild language delay, in whom trio‐exome sequencing identified novel biallelic CSGALNACT1 variants: compound heterozygosity for c.1294G>T (p.Asp432Tyr) and the deletion of exon 4 that includes the start codon in one patient, and homozygosity for c.791A>G (p.Asn264Ser) in the other patient. CSGALNACT1 encodes CSGalNAcT‐1, a key enzyme in the biosynthesis of sulfated glycosaminoglycans chondroitin and dermatan sulfate. Biochemical studies demonstrated significantly reduced CSGalNAcT‐1 activity of the novel missense variants, as reported previously for the p.Pro384Arg variant. Altered levels of chondroitin, dermatan, and heparan sulfate moieties were observed in patients’ fibroblasts compared to controls. Our data indicate that biallelic loss‐of‐function mutations in CSGALNACT1 disturb glycosaminoglycan synthesis and cause a mild skeletal dysplasia with advanced bone age, CSGALNACT1‐CDG.
Keywords:advanced bone age  cartilage and brain development  CSGalNAcT‐1  CSGALNACT1‐CDG  glycosaminoglycan  joint laxity  macrocephaly  proteoglycan  short stature
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号