首页 | 本学科首页   官方微博 | 高级检索  
     


Developing vasculature and stroma in engineered human myocardium
Authors:Kreutziger Kareen L  Muskheli Veronica  Johnson Pamela  Braun Kathleen  Wight Thomas N  Murry Charles E
Affiliation:Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.
Abstract:
We recently developed a scaffold-free patch of human myocardium with human embryonic stem cell-derived cardiomyocytes and showed that stromal and endothelial cells form vascular networks in vitro and improve cardiomyocyte engraftment. Here, we hypothesize that stromal cells regulate the angiogenic phenotype by modulating the extracellular matrix (ECM). Human marrow stromal cells (hMSCs) support the greatest degree of endothelial cell organization, at 1.3- to 2.4-fold higher than other stromal cells tested. Stromal cells produce abundant ECM components in patches, including fibrillar collagen, hyaluronan, and versican. We identified two clonal hMSC lines that supported endothelial networks poorly and robustly. Interestingly, the pro-angiogenic hMSCs express high levels of versican, a chondroitin sulfate proteglycan that modulates angiogenesis and wound healing, whereas poorly angiogenic hMSCs produce little versican. When transplanted onto uninjured athymic rat hearts, patches with proangiogenic hMSCs develop ~ 50-fold more human vessels and form anastomoses with the host circulation, resulting in chimeric vessels containing erythrocytes. Thus, stromal cells play a key role in supporting vascularization of engineered human myocardium. Different stromal cell types vary widely in their proangiogenic ability, likely due in part to differences in ECM synthesis. Comparison of these cells defines an in vitro predictive platform for studying vascular development.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号