首页 | 本学科首页   官方微博 | 高级检索  
     

基于影像信息的人工神经网络的脑胶质瘤分级
引用本文:毛弈韬,廖伟华,曹冬,赵璐晴,吴训华,孔令煜,周高峰,赵跃龙,王冬翠. 基于影像信息的人工神经网络的脑胶质瘤分级[J]. 中南大学学报(医学版), 2018, 43(12): 1315-1322. DOI: 10.11817/j.issn.1672-7347.2018.12.006
作者姓名:毛弈韬  廖伟华  曹冬  赵璐晴  吴训华  孔令煜  周高峰  赵跃龙  王冬翠
作者单位:1. 中南大学湘雅医院放射科,长沙 410008;2. 中南大学湘雅医学院基础医学院病理学系,长沙 410013;3. 中南大学湘雅医院病理科,长沙 410008;4. 华南理工大学计算机科学与工程学院,广州 510640;5. 中南大学湘雅医院临床医学博士后流动站,长沙 410008
基金项目:国家自然科学基金(81671676,81602575,81701847);湖南省自然科学基金(2017JJ3430,2017JJ3497,2017JJ2387)。
摘    要:
目的:探讨利用人工神经网络对脑胶质瘤进行分级的可行性和有效性。方法:回顾性纳入2012至2017年经病理证实的130例脑胶质瘤患者,基于磁共振增强T1加权相二维图像提取的共41个影像学特征。建立人工神经网络并进行特征选择以得到最优化的神经网络模型,随机抽取一半病例的影像学特征数据对神经网络进行训练,并用另一半特征数据对训练完成后的神经网络进行胶质瘤分级效果验证。对神经网络重复进行100次训练和验证,将结果进行平均。结果:经过特征选择后的神经网络模型共选取5个特征作为输入特征,神经网络对脑胶质瘤分级的平均准确率为90.32%,平均敏感度为87.86%,平均特异度为92.49%,受试者操作曲线的曲线下面积为0.9486。结论:人工神经网络作为一种人工智能方法,对脑胶质瘤分级具有较高的准确性,为脑胶质瘤的无创性术前分级提供了可行的辅助手段。

关 键 词:脑胶质瘤  特征选取  人工神经网络  

An artificial neural network model for glioma grading using image information
MAO Yitao,LIAO Weihua,CAO Dong,ZHAO Luqing,WU Xunhua,KONG Lingyu,ZHOU Gaofeng,ZHAO Yuelong,WANG Dongcui. An artificial neural network model for glioma grading using image information[J]. Journal of Central South University. Medical sciences, 2018, 43(12): 1315-1322. DOI: 10.11817/j.issn.1672-7347.2018.12.006
Authors:MAO Yitao  LIAO Weihua  CAO Dong  ZHAO Luqing  WU Xunhua  KONG Lingyu  ZHOU Gaofeng  ZHAO Yuelong  WANG Dongcui
Abstract:
Objective: To explore the feasibility and efficacy of artificial neural network for differentiating high-grade glioma and low-grade glioma using image information.Methods: A total of 130 glioma patients with confirmed pathological diagnosis were selectedretrospectively from 2012 to 2017. Forty one imaging features were extracted from each subjectsbased on 2-dimension magnetic resonance T1 weighted imaging with contrast-enhancement. Anartificial neural network model was created and optimized according to the performance of featureselection. The training dataset was randomly selected half of the whole dataset, and the other halfdataset was used to verify the performance of the neural network for glioma grading. The trainingverificationprocess was repeated for 100 times and the performance was averaged.Results: A total of 5 imaging features were selected as the ultimate input features for the neuralnetwork. The mean accuracy of the neural network for glioma grading was 90.32%, with a meansensitivity at 87.86% and a mean specificity at 92.49%. The area under the curve of receiveroperating characteristic curve was 0.9486.Conclusion: As a technique of artificial intelligence, neural network can reach a relatively highaccuracy for the grading of glioma and provide a non-invasive and promising computer-aideddiagnostic process for the pre-operative grading of glioma.
Keywords:glioma  feature selection  artificial neural network  
点击此处可从《中南大学学报(医学版)》浏览原始摘要信息
点击此处可从《中南大学学报(医学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号