深圳市肾综合征出血热时间序列预测分析 |
| |
引用本文: | 王敬忠,梅树江,李怀昕,程聪. 深圳市肾综合征出血热时间序列预测分析[J]. 应用预防医学, 2016, 0(5): 394-397. DOI: 10.3969/j.issn.1673-758X.2016.05.004 |
| |
作者姓名: | 王敬忠 梅树江 李怀昕 程聪 |
| |
作者单位: | 深圳市疾病预防控制中心 广东 深圳518055 |
| |
基金项目: | 深圳市科技研发资金项目(JCYJ20130329103949657) |
| |
摘 要: | 目的利用拟合ARIMA模型对深圳市肾综合征出血热(HFRS)的发病趋势进行时间序列分析和预测,为制定HFRS防治策略提供科学依据。方法收集深圳市2005—2014年HFRS季度发病资料,通过SPSS 19.0软件拟合ARIMA模型,预测2015年各季度的发病数。结果最终拟合为ARIMA(0,0,0)(0,1,1)4模型,残差为白噪声序列,预测值与实际值的平均相对误差为28.6%。2015年各季度HFRS发病的预测值符合实际值的变动趋势。结论 ARIMA模型能较好模拟深圳市HFRS的发病趋势。
|
关 键 词: | 肾综合征出血热 时间序列 ARIMA模型 预测 |
Time series predicting the epidemic tendency of HFRS in Shenzhen |
| |
Abstract: | Objective To analyze and predict incidence of hemorrhagic fever with renal syndrome (HFRS) in Shenzhen with an auto regressive integrated moving average (ARIMA) model, which may provide a scientific basis for developing prevention and control strategies on HFRS in the future. Methods Incidence of HFRS was collected quarterly from 2005 to 2014 and a model (ARIMA) was fit with SPSS 19.0 software, to predict the incidence of HFRS from the I quarter to IV quarter 2015.Results The model ARIMA (0, 0, 0) ( 0, 1, 0) 4 was established finally and the residual sequence was a white noise sequence. The relative error in average was 28.6% between the forecasting value and the real value. The predicted incidence in 2015 was consistent with the actual one. Conclusion ARIMA model can predict the trend of HFRS in Shenzhen. |
| |
Keywords: | hemorrhagic fever with renal syndrome time series ARIMA model prediction |
本文献已被 CNKI 万方数据 等数据库收录! |
|