首页 | 本学科首页   官方微博 | 高级检索  
检索        


Caffeic acid inhibits the formation of 1-hydroxyethyl radical in the reaction mixture of rat liver microsomes with ethanol partly through its metal chelating activity
Authors:Ikeda Hideyuki  Kimura Yuka  Masaki Miho  Iwahashi Hideo
Institution:Department of Chemistry, Wakayama Medical University, 580 Mikazura, Wakayama 641-0011, Japan
Abstract:Effect of caffeic acid on the formation of 1-hydroxyethyl radicals via the microsomal ethanol-oxidizing system pathway was examined. The electron spin resonance spin trapping showed that 1-hydroxyethyl radicals form in the control reaction mixture which contained 0.17 M ethanol, 1 mg protein/ml rat river microsomes, 0.1 M α-(4-pyridyl-1-oxide)-N-tert-butylnitrone, 5 mM nicotinamide adenine dinucleotide phosphate and 30 mM phosphate buffer (pH 7.4). When the electron spin resonance spectra of the control reaction mixtures with caffeic acid were measured, caffeic acid inhibited the formation of 1-hydroxyethyl radicals in a concentration dependent manner. Gallic acid, dopamine, l-dopa, chlorogenic acid and catechin also inhibited the formation of 1-hydroxyethyl radicals. Above results indicated that the catechol moiety is essential to the inhibitory effect. Caffeic acid seems to chelate of iron ion at the catechol moiety. Indeed, the inhibitory effect by caffeic acid was greatly diminished in the presence of desferrioxamine, a potent iron chelator which removes iron ion in the Fe (III)-caffeic acid complex. Since Fe (III)-desferrioxamine complex is active for the 1-hydroxyethyl radicals formation, caffeic acid inhibits the formation of 1-hydroxyethyl radicals in the reaction mixture partly through its metal chelating activity.
Keywords:P450  microsomes  1-hydroxyethyl radical  caffeic acid  chlorogenic acid
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号