首页 | 本学科首页   官方微博 | 高级检索  
检索        


Soccer-Specific Warm-Up and Lower Extremity Injury Rates in Collegiate Male Soccer Players
Authors:Dustin R Grooms  Thomas Palmer  James A Onate  Gregory D Myer  Terry Grindstaff
Institution:*The Ohio State University, Columbus ;University Athletic Training of Cincinnati, OH ;Cincinnati Children''s Hospital Medical Center, Sports Medicine Biodynamics Center and Human Performance Laboratory, OH ;§University of Cincinnati, OH ;Creighton University, Omaha, NE
Abstract:

Context:

A number of comprehensive injury-prevention programs have demonstrated injury risk-reduction effects but have had limited adoption across athletic settings. This may be due to program noncompliance, minimal exercise supervision, lack of exercise progression, and sport specificity. A soccer-specific program described as the F-MARC 11+ was developed by an expert group in association with the Federation Internationale de Football Association (FIFA) Medical Assessment and Research Centre (F-MARC) to require minimal equipment and implementation as part of regular soccer training. The F-MARC 11+ has been shown to reduce injury risk in youth female soccer players but has not been evaluated in an American male collegiate population.

Objective:

To investigate the effects of a soccer-specific warm-up program (F-MARC 11+) on lower extremity injury incidence in male collegiate soccer players.

Design:

Cohort study.

Setting:

One American collegiate soccer team followed for 2 seasons.

Patients or Other Participants:

Forty-one male collegiate athletes aged 18–25 years.

Intervention(s):

The F-MARC 11+ program is a comprehensive warm-up program targeting muscular strength, body kinesthetic awareness, and neuromuscular control during static and dynamic movements. Training sessions and program progression were monitored by a certified athletic trainer.

Main Outcome Measure(s):

Lower extremity injury risk and time lost to lower extremity injury.

Results:

The injury rate in the referent season was 8.1 injuries per 1000 exposures with 291 days lost and 2.2 injuries per 1000 exposures and 52 days lost in the intervention season. The intervention season had reductions in the relative risk (RR) of lower extremity injury of 72% (RR = 0.28, 95% confidence interval = 0.09, 0.85) and time lost to lower extremity injury (P < .01).

Conclusions:

This F-MARC 11+ program reduced overall risk and severity of lower extremity injury compared with controls in collegiate-aged male soccer athletes.Key Words: injury prevention, sport injuries, athletic trainers

Key Points

  • The F-MARC 11+ reduced the risk of lower extremity injuries in youth female soccer players, but limited evidence for its effectiveness exists in males and at the collegiate level.
  • A traditional warm-up did not prevent injury as effectively as the F-MARC 11+ program, despite taking the same amount of time.
  • When supervised by an athletic trainer, the F-MARC 11+ prevented injuries in collegiate male soccer players.
  • An athletic trainer administered intervention, reduced injury risk, and improved program compliance, progression, and execution.
Soccer is among the most popular sports in the world, boasting more than 265 million1 youth and amateur players and more than 37 000 American collegiate players.2 Soccer participation has continued to increase over the past decade worldwide and especially in the United States National Collegiate Athletic Association (NCAA).2 Lower extremity injury rates for male NCAA soccer athletes have remained relativity stable over the past decade (practice versus game: 8 versus 12.18 per 1000 exposures).2 Junge and Dvorak,3 in a systematic review of soccer injuries in international male players, reported 10 to 35 injuries per 1000 hours of match play and 2 to 7 per 1000 hours of training in international male soccer players. In cohorts of international, elite-level soccer athletes, the injury rate was high (1.3 injuries per player per season); most injuries affected the lower extremity (87%) and resulted from noncontact mechanisms (58%).4 The most common injury in male collegiate soccer players was ankle sprains (3.19 per 1000 exposures), followed by thigh muscle strains and knee sprains at 2.28 and 2.07 per 1000 exposures, respectively.2 These findings are consistent with reports of international-level soccer athletes.4 These lower extremity injuries have substantial short-term consequences, such as loss of participation, and the potential for long-term consequences, such as decreased physical activity5 and increased risk of osteoarthritis.510 Nearly 20% of all soccer injuries were severe, requiring greater than 10 days of time lost from activity.2 Knee ligament ruptures and leg fractures accounted for 35% of these injuries, many of which required surgical intervention and prolonged rehabilitative care; these patients also had a greatly increased risk of a secondary injury when they returned to soccer competition.2,11The high injury rate in soccer players has persisted despite scientific advances in injury etiology,1217 screening techniques, and the identification of athletes who may be at greater risk.1825 Although injury-prevention programs have successfully decreased lower extremity injuries such as ankle sprains,24,2629 anterior cruciate ligament (ACL) injuries,18,30,31 and hamstrings strains,20,24,29,3234 they have not yet been widely adopted,35 limiting their potential effects in soccer athletes.36Although numerous training programs have been designed to prevent injury,3,24,26,29,31,32,3755 few incorporate sport-specific components.37,38,41,42,56,57 Many of these programs have shown promising results in decreasing the risk of injury.18,37,38,41,58 However, extensive time, expert personnel, and special equipment are needed for these programs to be effective. To make injury-prevention programs as widely accessible as possible, the F-MARC 11+ program was developed by the Federation International de Football Association (FIFA) Medical Assessment and Research Center (F-MARC).59 This program can be completed in a short time frame, takes minimal training to implement, and requires only a soccer ball, making it an attractive alternative for sport coaches, strength and conditioning professionals, and rehabilitation specialists already working with limited time and budgets. Thus far, 4 studies37,38,41,60 have reported on the use of a version of the F-MARC 11+ program in adolescent males and females, with injury reductions ranging from 21% to 71%. In Norwegian handball players, similar training programs have produced a 49% reduction in injury risk40 and 94% reduction in ACL injury risk.39To our knowledge, the F-MARC 11+ has yet to be investigated for effectiveness in injury risk reduction in an American male collegiate soccer population. Therefore, our aim was to examine the effect of a sport-specific program implemented with athletic trainer supervision to track compliance, injury occurrence, and program performance quality. We hypothesized that the comprehensive, exercise-based soccer warm-up program (the F-MARC 11+) would be more effective than the traditional dynamic warm-up in preventing lower extremity injuries in male NCAA Division III collegiate soccer athletes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号