首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis and functionalization of chitosan built hydrogel with induced hydrophilicity for extended release of sparingly soluble drugs
Authors:Faheem Ullah  Fatima Javed  M. B. H. Othman  Abbas Khan  Rukhsana Gul  Zulkifli Ahmad
Affiliation:1. School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia;2. School of Chemical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia;3. Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan;4. Department of Chemistry, Kohat University of Science &5. Technology, Kohat, Pakistan
Abstract:
Addressing the functional biomaterials as next-generation therapeutics, chitosan and alginic acid were copolymerized in the form of chemically crosslinked interpenetrating networks (IPNs). The native hydrogel was functionalized via carbodiimide (EDC), catalyzed coupling of soft ligand (1,2-Ethylenediamine) and hard ligand (4-aminophenol) to replace –OH groups in alginic acid units for extended hydrogel- interfaces with the aqueous and sparingly soluble drug solutions. The chemical structure, Lower solution critical temperature (LCST ≈ 37.88 °C), particle size (Zh,app ≈ 150–200 nm), grain size (160–360 nm), surface roughness (85–250 nm), conductivity (37–74 mv) and zeta potential (16–32 mv) of native and functionalized hydrogel were investigated by using FT-IR, solid state-13C-NMR, TGA, DSC, FESEM, AFM and dynamic light scattering (DLS) measurements. The effective swelling, drug loading (47–78%) and drug release (53–86%) profiles were adjusted based on selective functionalization of hydrophobic IPNs due to electrostatic complexation and extended interactions of hydrophilic ligands with the aqueous and drug solutions. Drug release from the hydrogel matrices with diffusion coefficient n ≈ 0.7 was established by Non- Fickian diffusion mechanism. In vitro degradation trials of the hydrogel with a 20% loss of wet mass in simulated gastric fluid (SGF) and 38% loss of wet mass in simulated intestinal fluid (SIF), were investigated for 400 h through bulk erosion. Consequently, a slower rate of drug loading and release was observed for native hydrogel, due to stronger H-bonding, interlocking and entanglement within the IPNs, which was finely tuned and extended by the induced hydrophilic and functional ligands. In the light of induced hydrophilicity, such functional hydrogel could be highly attractive for extended release of sparingly soluble drugs.
Keywords:Hydrogels:ligands  induced hydrophilicity  in-vitro drug release  in vitro degradation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号