首页 | 本学科首页   官方微博 | 高级检索  
     


Statistical reconstruction for x-ray CT systems with non-continuous detectors
Authors:Zbijewski Wojciech  Defrise Michel  Viergever Max A  Beekman Freek J
Affiliation:Image Sciences Institute, Department of Nuclear Medicine and Rudolf Magnus Institute of Neuroscience, UMC Utrecht, Stratenum, Universiteitsweg 100, STR5.203 3584 CG Utrecht, The Netherlands, and University Hospital, Brussels, Belgium.
Abstract:
We analyse the performance of statistical reconstruction (SR) methods when applied to non-continuous x-ray detectors. Robustness to projection gaps is required in x-ray CT systems with multiple detector modules or with defective detector pixels. In such situations, the advantage of statistical reconstruction is that it is able to ignore missing or faulty pixels and that it makes optimal use of the remaining line integrals. This potentially obviates the need to fill the sinogram discontinuities by interpolation or any other approximative pre-processing techniques. In this paper, we apply SR to cone beam projections of (i) a hypothetical modular detector micro-CT scanner and of (ii) a system with randomly located defective detector elements. For the modular-detector system, SR produces reconstruction volumes free of noticeable gap-induced artefacts as long as the location of detector gaps and selection of the scanning range provide complete object sampling in the central imaging plane. When applied to randomly located faulty detector elements, SR produces images free of substantial ring artefacts even for cases where defective pixels cover as much as 3% of the detector area.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号