Moxifloxacin modifies corneal fibroblast-to-myofibroblast differentiation |
| |
Authors: | TC Chen SW Chang TY Wang |
| |
Affiliation: | 1.Department of Ophthalmology, Far Eastern Memorial Hospital, Banqiao District, New Taipei City, Taiwan;2.Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan |
| |
Abstract: |
Background and PurposeFibroblast-to-myofibroblast differentiation is associated with scarring, an important issue in corneal surgery. Moxifloxacin (MOX), commonly applied to prevent post-operative infection, would benefit more if it modifies fibroblast-to-myofibroblast differentiation other than antimicrobial activity. Our purpose was to explore whether MOX has anti-fibrotic effect in human corneal fibroblasts (HCFs).Experimental ApproachHCFs were incubated in MOX-containing medium concurrently with TGF-β1 (co-treatment), before (pretreatment) or after (post-treatment) adding TGF-β1. HCF contractility was evaluated with a type I collagen gel contraction assay. Expression of α-smooth muscle actin (α-SMA), Smad2, phospho-Smad2-Ser467, Smad4 and Smad7 was determined by immunoblotting. Formation of α-SMA-positive filaments and distribution of active Smad2 were observed under confocal microscopy. Expression of TGF-β receptor types I (TGFBR1) and II (TGFBR2) was assessed with flow cytometry.Key ResultsMOX did not affect gel contractility or α-SMA filament formation in HCFs without TGF-β1 stimulation. MOX did, however, retard HCF-containing gel contractility and α-SMA filament formation following TGF-β1 stimulation in the pretreatment and co-treatment groups but not in the post-treatment group. MOX blocked the expression of Smad2, phospho-Smad2-Ser467 and TGFBR1 under TGF-β1 incubation. Additionally, MOX enhanced Smad7 expression in TGF-β1-incubated HCFs, but did not interfere with TGF-β-triggered Smad2 nuclear translocation or Smad4 expression.Conclusions and ImplicationsMOX inhibited TGF-β-induced fibroblast-to-myofibroblast differentiation via blocking TGFBR1 and enhancing Smad7 expression. MOX should be used before or during surgery to achieve these effects. These results suggest a de novo mechanism by which MOX participates in corneal wound healing. |
| |
Keywords: | MOX, HCFs, TGFBR1, TGFBR2, fibroblast-to-myofibroblast differentiation, α -SMA filament formation, Smad2 phosphorylation |
|
|