首页 | 本学科首页   官方微博 | 高级检索  
     


Inhibition of oxidant-induced barrier disruption and protein tyrosine phosphorylation in Caco-2 cell monolayers by epidermal growth factor
Authors:Rao R  Baker R D  Baker S S
Affiliation:Department of Pediatrics, Medical University of South Carolina, Charleston 29425, USA. raor@musc.edu
Abstract:
The effect of epidermal growth factor (EGF) on the H202-induced increase in paracellular permeability in Caco-2 and T-84 cell monolayers was evaluated to examine the role of EGF in intestinal mucosal protection from oxidative stress. Oxidative stress was induced by exposing cell monolayers to H2O2 or a mixture of xanthine oxidase + xanthine (XO + X). Paracellular permeability was assessed by measuring transepithelial electrical resistance (TER), sodium chloride dilution potential, and unidirectional flux of [3H]mannitol. H2O2 (0.1 to 5.0 mM) reduced TER and dilution potential and increased mannitol flux. Administration of EGF delayed H2O2 and XO + X-induced changes in TER, dilution potential, and [3H]mannitol flux. This protective effect of apically or basally administered EGF was concentration-related, with A50 (95% confidence limits) values of 2.1 (1.17 to 4.34) and 6.0 (4.37 to 8.34) nM, respectively. The EGF-mediated protection was prevented by treatment of cell monolayers with genistein (10 microM), a tyrosine kinase inhibitor. H2O2 and XO + X also induced tyrosine phosphorylation of a number of proteins in Caco-2 and T-84 cell monolayers. EGF treatment inhibited the oxidant-induced tyrosine phosphorylation of proteins, particularly those with a molecular mass of 110-220 kDa. Treatment of Caco-2 cells with anti-transforming growth factor-alpha antibodies potentiated the H2O2-induced changes in TER, dilution potential, and mannitol flux. These studies demonstrated that an EGF receptor-mediated mechanism delays oxidant-induced disruption of the epithelial barrier function, possibly by suppressing the oxidant-induced tyrosine phosphorylation of proteins.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号