A flexible model for the mean and variance functions,with application to medical cost data |
| |
Authors: | Jinsong Chen Lei Liu Daowen Zhang Ya‐Chen T. Shih |
| |
Affiliation: | 1. Department of Preventive Medicine, Northwestern University, , Chicago, IL, U.S.A.;2. Robert H. Lurie Comprehensive Cancer Center of Northwestern University, , Chicago, IL, U.S.A.;3. Department of Statistics, North Carolina State University, , Raleigh, NC, U.S.A.;4. Department of Medicine, University of Chicago, , Chicago, IL, U.S.A. |
| |
Abstract: | Medical cost data are often skewed to the right and heteroscedastic, having a nonlinear relation with covariates. To tackle these issues, we consider an extension to generalized linear models by assuming nonlinear associations of covariates in the mean function and allowing the variance to be an unknown but smooth function of the mean. We make no further assumption on the distributional form. The unknown functions are described by penalized splines, and the estimation is carried out using nonparametric quasi‐likelihood. Simulation studies show the flexibility and advantages of our approach. We apply the model to the annual medical costs of heart failure patients in the clinical data repository at the University of Virginia Hospital System. Copyright © 2013 John Wiley & Sons, Ltd. |
| |
Keywords: | generalized linear model semiparametric regression health econometrics smoothing parameter generalized cross‐validation |
|
|