首页 | 本学科首页   官方微博 | 高级检索  
     


NADPH oxidases regulate endothelial inflammatory injury induced by PM2.5 via AKT/eNOS/NO axis
Authors:Lingyue Zou  Lilin Xiong  Tianshu Wu  Tingting Wei  Na Liu  Changcun Bai  Xiaoquan Huang  Yuanyuan Hu  Yuying Xue  Ting Zhang  Meng Tang
Affiliation:1. Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China;2. Department of Environmental Health, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
Abstract:Fine particulate matter (PM2.5)-induced detrimental cardiovascular effects have been widely concerned, especially for endothelial cells, which is the first barrier of the cardiovascular system. Among potential mechanisms involved, reactive oxidative species take up a crucial part. However, source of oxidative stress and its relationship with inflammatory response have been rarely studied in PM2.5-induced endothelial injury. Here, as a key oxidase that catalyzes redox reactions, NADPH oxidase (NOX) was investigated. Human umbilical vein endothelial cells (EA.hy926) were exposed to Standard Reference Material 1648a of urban PM2.5 for 24 h, which resulted in NOX-sourced oxidative stress, endothelial dysfunction, and inflammation induction. These are manifested by the up-regulation of NOX, increase of superoxide anion and hydrogen peroxide, elevated endothelin-1 (ET-1) and asymmetric dimethylarginine (ADMA) level, reduced nitric oxide (NO) production, and down-regulation of phosphorylation of endothelial NO synthase (eNOS) with increased levels of inducible NO synthase, as well as the imbalance between tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor 1 (PAI-1), and changes in the levels of pro-inflammatory and anti-inflammatory factors. However, administration of NOX1/4 inhibitor GKT137831 alleviated PM2.5-induced elevated endothelial dysfunction biomarkers (NO, ET-1, ADMA, iNOS, and tPA/PAI-1), inflammatory factors (IL-1β, IL-10, and IL-18), and adhesion molecules (ICAM-1, VCAM-1, and P-selectin) and also passivated NOX-dependent AKT and eNOS phosphorylation that involved in endothelial activation. In summary, PM2.5-induced NOX up-regulation is the source of ROS in EA.hy926, which activated AKT/eNOS/NO signal response leading to endothelial dysfunction and inflammatory damage in EA.hy926 cells.
Keywords:air pollution  endothelial dysfunction  NADPH oxidase  PM2.5  signaling pathway
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号