首页 | 本学科首页   官方微博 | 高级检索  
     


Chronic exposure to cold stress alters electrophysiological properties of locus coeruleus neurons recorded in vitro.
Authors:Hank P Jedema  Anthony A Grace
Affiliation:Department of Neuroscience, University of Pittsburgh, PA 15260, USA. Jedema@bns.pitt.edu
Abstract:Chronic stress exposure can alter central noradrenergic function. Previously, we reported that in chronically cold-exposed rats the release of norepinephrine and electrophysiological activation of locus coeruleus (LC) neurons is enhanced in response to multiple excitatory stimuli without alterations in basal activity. In the present studies, we used in vitro intracellular recording techniques to explore the effect of chronic cold exposure on the basal and evoked electrophysiological properties of LC neurons in horizontal slices of the rat brainstem. Consistent with our findings from in vivo experiments, chronic cold exposure did not affect basal firing rate. Furthermore, gross morphology of LC neurons and spike waveform characteristics were similar in slices from control and previously cold-exposed rats. However, excitability in response to intracellular current injection and input resistance were larger in slices from previously cold-exposed rats. In addition, the accommodation of spike firing in response to sustained current injection was smaller and the period of postactivation inhibition appeared to be less in LC neurons from cold-exposed rats. These data demonstrate that the stress-evoked sensitization of LC neurons observed in vivo is at least in part maintained in the slice preparation and suggest that alterations in electrophysiological properties of LC neurons contribute to the chronic stress-induced sensitization of central noradrenergic function observed in vivo. Furthermore, the present data suggest that an alteration in autoinhibitory control of LC activity is involved in the chronic stress-induced alterations. The enhanced functional capacity of LC neurons following cold exposure of rats may represent a unique model to study the mechanisms underlying the alterations in central noradrenergic function observed in humans afflicted with mood and anxiety disorders.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号