首页 | 本学科首页   官方微博 | 高级检索  
     

基于混合核函数的PSO-SVM分类算法
引用本文:刘春卫,罗健旭. 基于混合核函数的PSO-SVM分类算法[J]. 医学教育探索, 2014, 0(1): 96-101
作者姓名:刘春卫  罗健旭
作者单位:华东理工大学信息科学与工程学院, 上海 200237;华东理工大学信息科学与工程学院, 上海 200237
基金项目:上海市自然科学基金(12ZR1408200);中央高校基本科研业务费专项资金
摘    要:
在数据挖掘中,支持向量机是被广泛应用的一种分类算法,其核函数的选择及参数的设定没有有效的标准。本文采用混合核函数构造兼顾学习能力和泛化性能的支持向量机算法,并利用粒子群算法来确定支持向量机的参数。应用基于混合核函数的PSO SVM算法对一个经典的分类测试数据集进行分类,将该算法与单一核函数支持向量机算法的分类结果进行比较,结果表明所提出的算法的分类性能有明显提升。

关 键 词:支持向量机; 混合核函数; 粒子群优化
收稿时间:2013-06-19

A PSO SVM Classifier Based on Hybrid Kernel Function
LIU Chun-wei and LUO Jian-xu. A PSO SVM Classifier Based on Hybrid Kernel Function[J]. Researches in Medical Education, 2014, 0(1): 96-101
Authors:LIU Chun-wei and LUO Jian-xu
Affiliation:School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China;School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
Abstract:
Abstract: Support vector machine(SVM) has been widely used in data mining as a classification algorithm. However, there is no effective standard in choosing its kernel function and setting the related parameters. In order to reach both stronger learning ability and generalization ability, this paper poposes a hybrid kernel function, in which the parameters of SVM are optimized by means of PSO(particle swarm optimization). The comparison is made on a classical classification problem, which is shown from the results that the proposed algorithm has better performance than the SVM based on single kernel function.
Keywords:support vector machine   mixed kernel function   particle swarm optimization
点击此处可从《医学教育探索》浏览原始摘要信息
点击此处可从《医学教育探索》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号