首页 | 本学科首页   官方微博 | 高级检索  
     


Changes of mesenchymal stromal cells mobilization and bone turnover in an experimental bone fracture model in ovariectomized mice
Authors:Jian Pang  Hai-Ling Guo  Dao-Fang Ding  Yu-Yun Wu  Yong-Fang Zhao  Xin-Feng Gu  Yu-Xin Zheng
Affiliation:1.Research Institute of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;2.Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
Abstract:
Objective: The aim of this study was to characterize the mesenchymal stromal cells (MSCs) and endothelial progenitor cells (EPCs) mobilization, and bone turnover in osteoporotic fracture healing in ovariectomized mice. Methods: In total, 112 female C57/BL mice were divided into two groups. The first group was sham-operated (SO), and the other group was ovariectomized (OVX). After three weeks, the right femora of the mice were fractured under anesthesia and internally fixed with steel pin. Peripheral blood and bone marrow were was collected for flow cytometry analysis, at 0 hours (h), 12 h, 24 h, 72 h and 168 h after fracture. MSCs and EPCs levels were assessed using cell surface antigens in different combinations (CD44+ CD34-CD45-, and CD34+ KDR+CD45-) by flow cytometry. At 0, 14, 28 and 42 days after fracture, sera were assayed for circulating levels of procollagen type I-N-terminal propeptide (P1NP) and C-terminal telopeptide of type I-collagen (CTX) by ELISA. Femurs were harvested at 2 weeks and 6 weeks after fracture for X-ray radiography, micro-computed tomography (micro-CT) and histology. Results: Our results showed that bone marrow and peripheral blood MSCs numbers of the OVX mice were significantly lower than the SO mice, at 12 h, 24 h and 72 h after fracture. In addition, circulating P1NP and CTX levels of the OVX mice were significantly higher than the SO mice, at 2 and 4 weeks. Conclusion: Results of the present study revealed disorders of bone marrow MSCs mobilization and bone turnover may partially account for the delay of osteoporotic fracture healing.
Keywords:Osteoporosis   bone healing   MSCs   mobilization   mouse
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号