首页 | 本学科首页   官方微博 | 高级检索  
     

一种对混养细胞基于形态的细胞分选方法
引用本文:刘凯强,化梦姣,林楠,吴禹. 一种对混养细胞基于形态的细胞分选方法[J]. 医用生物力学, 2019, 34(2): 153-159
作者姓名:刘凯强  化梦姣  林楠  吴禹
作者单位:浙江大学 航空航天学院,工程力学系,浙江大学 航空航天学院,工程力学系,浙江大学 生命科学学院遗传与再生生物研究所,浙江大学 航空航天学院工程力学系;浙江省软体机器人与智能器件研究重点实验室;浙江大学 软物质科学研究中心
基金项目:国家自然科学基金项目(11402227, 11621062, 11432012),中央高校基本科研业务费(2015QNA4034),青年千人计划启动基金
摘    要:目的通过对采集的细胞图像的定量识别,并结合基于机器学习的聚类分析,实现对混合培养的多种细胞基于形态的快速识别分选。方法对体外混合培养的A549和3T3两种细胞进行免疫荧光染色以表征其形态轮廓,利用CellProfiler对采集的荧光图片进行细胞形态特征的提取,再通过CellProfiler Analyst对提取的数据进行机器学习,训练出一种规则,形成一种泛化能力,以达到对混合培养的两种细胞进行识别分选的目的。结果训练分类器准确率为81.24%,可以实现A549和3T3细胞的二分类。结论机器学习有助于提升数据聚类分析的准确率,将其应用于细胞图像的识别,可为临床对组织切片进行快速病理检测提供预判断,从而减轻医生的工作量,提高诊断的准确率。

关 键 词:细胞培养; 免疫荧光染色; 图像采集和处理; 机器学习
收稿时间:2019-03-07
修稿时间:2019-03-14

Morphologically Based Cell Classification in Mixed Cultures
LIU Kaiqiang,HUA Mengjiao,LIN Nan and WU Yu. Morphologically Based Cell Classification in Mixed Cultures[J]. Journal of Medical Biomechanics, 2019, 34(2): 153-159
Authors:LIU Kaiqiang  HUA Mengjiao  LIN Nan  WU Yu
Affiliation:Department of Engineering Mechanics, Zhejiang University,Department of Engineering Mechanics, Zhejiang University,College of Life Sciences, Zhejiang University and Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University; Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University;Soft Matter Research Center, Zhejiang University
Abstract:Objective To make quantitative analysis on collected cell images combined with machine learning integrated clustering algorithm, so as to explore a method for fast recognition and classification of cells in mixed cultures based on morphology. Methods The morphometric properties of A549 and 3T3 cells in vitro were characterized by immunostaining, the fluorescent images were then analyzed with CellProfiler to extract the parameters of cell morphology. The parameters were loaded into CellProfiler Analyst to be trained with machine learning algorithm, and a rule was developed to form a generalization capability for cell classification in mixed cultures. Results The accuracy of the training classifier was 81-24%, and the binary classifications of A549 and 3T3 cells could be realized. Conclusions The method of machine learning is very effective in parameter clustering. The application of machine learning into cell image recognition can provide pre-judgment for rapid pathological examination of tissue sections, thereby reducing the workload of doctors and improving the accuracy of diagnosis.
Keywords:cell culture   immunofluorescence staining   image acquisition and processing   machine learning
本文献已被 CNKI 等数据库收录!
点击此处可从《医用生物力学》浏览原始摘要信息
点击此处可从《医用生物力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号