Optimal Moving Angle of Pusher Plate in Occlusive‐Type Pulsatile Blood Pump |
| |
Authors: | Hyuk Choi Hwansung Lee Jaesoon Choi Jung Joo Lee Kyoung Won Nam Jun Woo Park Yongdoo Park Kyung Sun Heung‐Man Lee |
| |
Affiliation: | 1. Department of Biomedical Engineering, Brain Korea 21 Project for Biomedical Science;2. Medical Devices Clinical Trial Center, Guro Hospital;3. Korea Artificial Organ Center, Seoul, Korea;4. Department of Artificial Organs, Research Institute, National Cardiovascular Center, Osaka, Japan;5. and;6. Biomedical Engineering Branch, National Cancer Center, Seoul, Korea;7. Department of Biomedical Engineering;8. Department of Thoracic and Cardiovascular Surgery;9. Department of Otorhinolaryngology—Head and Neck Surgery, College of Medicine, Korea University |
| |
Abstract: | Since the occlusive‐type pulsatile extracorporeal blood pump (Twin‐Pulse Life Support System; Seoul National University, Seoul, Korea) received the CE mark of the European Directives and Korea Food and Drug Administration approval (2004) for short‐term applications as an extracorporeal life support system, the pump system has been tested for hemolysis. This pump system was recently upgraded with an ameliorated pusher plate to reduce hemolysis. In this study, numerical analysis and in vitro tests were performed to determine the optimal conditions for increasing the durability of the blood sac and pump output. During the simulation, the minimum sliding interface force (SIF) for the angle of the pusher plate movement (PPM) was calculated (40–70°). In the in vitro durability test, the angle of the PPM was increased gradually from 40 to 70° in 10° increments, and the mean time to failure (MTTF) of the blood sac was calculated. Fifteen tests were conducted for each case: 40, 50, 60, and 70° (n = 15 each). The MTTF of the blood sac was defined as the time when a crack of the blood sac occurred. The longer lifetime of the blood sac at 60° of the PPM (297.0 h) than that at 50° (197.6 h) was attributed to the lower SIF value (?0.13, normalized value) at 60° of the PPM. |
| |
Keywords: | Occlusive‐type pulsatile blood pump Numerical analysis Angle of pusher plate movement Reliability |
|
|