首页 | 本学科首页   官方微博 | 高级检索  
     


Stereoselectivity in metabolism of ifosfamide by CYP3A4 and CYP2B6
Authors:H. Lu  J. J. Wang  K. K. Chan  P. A. Philip
Affiliation:1. Colleges of Pharmacy and Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA;2. Division of Hematology and Oncology, Wayne State University, Detroit, MI, USA
Abstract:The aim was to identify the hepatic cytochromes P450 (CYPs) responsible for the enantioselective metabolism of ifosfamide (IFA). The 4-hydroxylation, N2- and N3-dechloroethylation of IFA enantiomers were monitored simultaneously in the same metabolic systems using GC/MS and pseudoracemate techniques. In human and rat liver microsomes, (R)-IFA was preferentially metabolized via 4-hydroxylation, whereas its antipode was biotransformed in favour of N-dechloroethylation. CYP3A4 was the major enzyme responsible for metabolism of IFA enantiomers in human liver. The study also revealed that CYP3A (human CYP3A4/5 and rat CYP3A1/2) and CYP2B (human CYP2B6 and rat CYP2B1/2) enantioselectively mediated the 4-hydroxylation, N2- and N3-dechloroethylation of IFA. CYP3A preferentially supported the formation of (R)-4-hydroxyIFA (HOIF), (R)-N2-dechloroethylIFA (N2D) and (R)-N3-dechloroethylIFA (N3D), whereas CYP2B preferentially mediated the generation of (S)-HOIF, (S)-N2D and (S)-N3D. The enantioselective metabolism of IFA by CYP3A4 and CYP2B1 was confirmed in cDNA transfected V79 cells.
Keywords:Ifosfamide  4-hydroxylation  N2- and N3-dechloroethylation  CYP3A4  CYP2B6  GC/MS
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号