首页 | 本学科首页   官方微博 | 高级检索  
     


A single Glu(62)-to-Lys(62) mutation in the Mos residues of the R7Delta447Gag-tMos protein causes the mutant virus to induce brain lesions
Authors:Yuen P H  Ryan E A  Devroe E  Wong P K
Affiliation:Department of Carcinogenesis, Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA.
Abstract:
We previously reported that R7Delta447, a 2954-base-pair (bp) laboratory-generated Moloney murine sarcoma virus, induced subcutaneous tumors in about 14% of infected mice but did not induce brain lesions. We now report that R7Delta447K, a spontaneous mutant of R7Delta447, induced brain lesions as well as subcutaneous tumors in all injected mice. The genomes of the two viruses differ in a single base pair: the deduced Glu(62) of the Mos residue of the R7Delta447 Gag-tMos protein is changed to Lys(62). More R7Delta447 than R7Delta447K focus-forming units were detected in both NIH3T3 and mouse cerebral vascular endothelial (MCVE) cells. However, R7Delta447K transformed NIH3T3 and MCVE cells more acutely than did R7Delta447. A distinctive feature that distinguished the morphologic transformation of R7Delta447- and R7Delta447K-infected MCVE cells is the markedly prolonged spindle-shaped phase exhibited by R7Delta447-infected MCVE cells. In addition, R7Delta447K was more efficient in inducing the phosphorylation of ERK1/2 than R7Delta447 in both MCVE and NIH3T3 cells. Moreover morphologic transformation was inhibited, and levels of phosphorylated ERK1/2 were reduced when R7Delta447- or R7Delta447K-infected NIH3T3 or MCVE cells were grown in the presence of the MEK1/2-specific inhibitor PD98095. Thus, we have identified a key residue in the Gag-tMos protein that profoundly affects activation of the Mos/MEK/ERK pathway, virus and cell replication, morphologic transformation in vitro and pathogenicity in vivo.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号