首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis and swelling-deswelling kinetics of poly(N-isopropylacrylamide) hydrogels grafted with LCST modulated polymers
Authors:Kaneko Y  Nakamura S  Sakai K  Kikuchi A  Aoyagi T  Sakurai Y  Okano T
Affiliation:Department of Chemical Engineering, Waseda University, Tokyo, Japan.
Abstract:
Two types of thermo-responsive hydrogels are synthesized to obtain comb-type grafted gels with different lower critical solution temperatures (LCSTs) between graft chains and cross-linked backbone networks: these are poly(N-isopropylacrylamide) (PIPAAm) cross-linked hydrogels grafted with poly(N-isopropylacryl amide-co-N,N-dimethylacrylamide) (poly(IPAAm-co-DMAAm)) maintaining a freely mobile end and poly(IPAAm-co-DMAAm) cross-linked hydrogels grafted with PIPAAm chains. The effect of graft chain hydrophilic/hydrophobic balance as well as its mobility on deswelling kinetics of these grafted gels are investigated through the polymer LCST modulation and external temperature changes. The deswelling rate of poly(IPAAm-co-DMAAm)-grafted PIPAAm gel increases with increasing in temperature. This gel shows a discontinuous increase of the deswelling rate when the temperature is applied from below to above the graft chain LCST (37 degrees C). The deswelling rate of PIPAAm-grafted poly(IPAAm-co-DMAAm) gel increases continuously when the temperature is applied from below to above the graft chain LCST (31 degrees C). Due to the strong hydrophilicity of backbone network, the hydrophobic aggregation force weak. In contrast to the graft-type gels, normal-type poly(IPAAm-co-DMAAm) cross-linked gel without graft chains demonstrates the discontinuous decrease for the deswelling rate when the temperature is applied from below to above the polymer LCST (36 degrees C), entrapping water inside the gel due to the formation of an impermeable dense skin layer at the gel surface. These gel deswelling mechanisms are discussed in terms of gel structures.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号