首页 | 本学科首页   官方微博 | 高级检索  
     


Intensity of chronic cerebral hypoperfusion determines white/gray matter injury and cognitive/motor dysfunction in mice
Authors:Miki Kazunori  Ishibashi Satoru  Sun Liyuan  Xu Haiyan  Ohashi Wataru  Kuroiwa Toshihiko  Mizusawa Hidehiro
Affiliation:Department of Neurology and Neurological Science, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
Abstract:
We sought to establish a mouse model of subcortical ischemic vascular dementia (SIVD) that develops predominant white matter (WM) injury and cognitive dysfunction induced by chronic cerebral hypoperfusion. Adult C57Bl/6 male (n = 48) mice were subjected to bilateral common carotid artery stenosis with external microcoils (inner diameters: 0.16 mm, left; 0.18 mm, right). Mice were categorized according to left-side cerebral blood flow (CBF) value on day 6 into those with severe cerebral hypoperfusion (SCH; n = 16, < 30% of preoperative CBF baseline value) or moderate cerebral hypoperfusion (MCH; n = 21, 30-50% of preoperative value). Another 15 mice were sham operated. Neurological dysfunction was evaluated by Morris water maze, rotating rod, and open field tests. Histopathological examination was performed on day 35 after surgery. MCH animals showed persistent hyperlocomotion with reduced anxiety and spatial reference memory dysfunction. Rarefaction and small necrotic lesions were predominantly confined to the WM, with reactive astrocytosis, microglial infiltration, axonal loss, and myelin disruption, and these changes were dominant on the left side. SCH animals had persistent hyperlocomotion and motor dysfunction, and their ischemic lesions extended from the WM to the hippocampus and cortex. In MCH animals, myelin basic protein and neurofilament fiber densities in the WM were correlated with the time spent in the correct area in the water maze probe trials. Our MCH mouse model with the development of several types of neurological dysfunction with high reproducibility would be useful for investigating the pathomechanisms of WM injury in human SIVD.
Keywords:cerebral blood flow  ischemia  cognitive impairment  mouse  white matter
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号