首页 | 本学科首页   官方微博 | 高级检索  
检索        


Effect of lactate and bicarbonate on human peritoneal mesothelial cells, fibroblasts and vascular endothelial cells, and the role of basic fibroblast growth factor.
Authors:Satoshi Ogata  Takayuki Naito  Noriaki Yorioka  Kei Kiribayashi  Masatoshi Kuratsune  Nobuoki Kohno
Institution:Department of Internal Medicine, National Kure Medical Center, Hiroshima, Japan.
Abstract:BACKGROUND: In patients on long-term continuous ambulatory peritoneal dialysis (CAPD), peritoneal dysfunction may occur due to loss of peritoneal mesothelial cells, peritoneal fibrosis and neovascularization. Lactate, long used as a buffer in peritoneal dialysates, has been substituted by bicarbonate in recent years. However, their effects on the peritoneum of CAPD patients are unknown. This study investigated the influence of lactate and bicarbonate on peritoneal dysfunction in CAPD patients. METHODS: The mitochondrial activity of human peritoneal mesothelial cells (HPMCs) and their expression of basic fibroblast growth factor (bFGF) were studied after culture under various conditions. We also assessed the mitochondrial-activating effect of the supernatant of those cultures on human peritoneal fibroblasts (HPFBs) and human umbilical vein endothelial cells (HUVECs) and the effect of recombinant human bFGF on the mitochondrial activity of HPFBs and HUVECs. We used the WST-1 assay to determine mitochondrial activity in HPMC. RESULTS: At pH 7.4, the mitochondrial activity of HPMCs was lowest in a medium containing 40 mM (Lac), intermediate in a lactate (15 mM) plus bicarbonate (25 mM) medium (Lac/Bic), and highest in a 40 mM bicarbonate medium (Bic). In culture supernatant, the increase of bFGF was: Lac > Lac/Bic > Bic. Mitochondrial activation of HPFBs and HUVECs was stimulated by HPMC culture supernatants in the following decreasing order: Lac > Lac/Bic > Bic. The effects of these supernatants were suppressed by a bFGF-neutralizing antibody, while recombinant bFGF caused concentration-dependent mitochondrial activation in HPFBs and HUVECs. CONCLUSIONS: The role of bFGF in peritoneal fibrosis and neovascularization may be important. A bicarbonate-containing medium is better than a lactate-containing medium for preserving cell viability in HPMCs and preventing bFGF expression by these cells.
Keywords:fibrosis  growth factors  peritoneal dialysis  vascular reactivity
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号