Fibroblast sheets co-cultured with endothelial progenitor cells improve cardiac function of infarcted hearts |
| |
Authors: | Hiroshi Kobayashi Tatsuya Shimizu Masayuki Yamato Kayoko Tono Haruchika Masuda Takayuki Asahara Hiroshi Kasanuki Teruo Okano |
| |
Affiliation: | Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan. |
| |
Abstract: | We have already confirmed that cell sheet transplantation can improve damaged heart function via continuous cytokine secretion. In this study, we hypothesized that cytokine-secreting cell sheets co-cultured with an endothelial cell source may be more effective for repairing ischemic myocardium. Confluent rat fibroblasts cultured on temperature-responsive culture dishes were harvested as contiguous cell sheets by temperature reduction. Green fluorescent protein (GFP)-positive endothelial progenitor cells (EPCs) were seeded on fibroblast sheets to create co-cultured cell sheets, and sandwich-like constructs were engineered by stacking of the co-cultured cell sheets. These constructs were transplanted into rat myocardial infarction models. Cardiac function and histology were assessed in four groups: the sham operation (C) group, the isolated EPC injection (E) group, the transplantation of triple-layer fibroblast sheets (F) group, and the transplantation of triple-layer sandwich-like constructs (E + F) group. Echocardiography showed significant improvement of the fractional shortening in the E + F group in comparison with the C group (0.25 +/- 0.05 vs. 0.16 +/- 0.02). On histological examination, significantly less connective tissue formation was observed in the E, F, and E + F groups when compared to the C group (C, E, F, and E + F groups: 53 +/- 2%, 41 +/- 4%, 40 +/- 4%, and 32 +/- 7%, respectively). Additionally, increased blood vessel formation was detected in the E, F, and E + F groups compared with the C group (C, E, F, and E + F groups: 1.9% +/- 0.6%, 6.7% +/- 0.6%, 7.8% +/- 0.9%, and 10.2% +/- 2.4%, respectively). Furthermore, GFP-staining demonstrated that the newly formed blood vessels were composed of the co-cultured EPCs. Transplantation of cell sheets co-cultured with an endothelial cell source may be a new therapeutic strategy for myocardial tissue regeneration. |
| |
Keywords: | Tissue engineering Cell sheet Endothelial progenitor cells Heart |
本文献已被 SpringerLink 等数据库收录! |
|