Tumor-targeted gene therapy: strategies for the preparation of ligand-polyethylene glycol-polyethylenimine/DNA complexes. |
| |
Authors: | Manfred Ogris Greg Walker Thomas Blessing Ralf Kircheis Markus Wolschek Ernst Wagner |
| |
Affiliation: | Pharmaceutical Biology-Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universitaet, Butenandtstr. 5-13, D-81377, Muenchen, Germany. |
| |
Abstract: | Surface-shielded DNA delivery systems have been synthesized with virus-like characteristics that target gene expression into distant tumor tissues. Polyethylenimine (PEI)/DNA complexes ('polyplexes') conjugated with the cell-binding ligand transferrin (Tf) or epidermal growth factor (EGF) were used to achieve receptor-mediated endocytosis. The surface charge of the complexes was masked by covalently linking PEI to polyethylene glycol (PEG). Three alternatives for generating these surface-shielded formulations were utilized, attaching ligand and PEG molecules to PEI either before or after DNA complex formation. The stabilized formulations could be ultra-concentrated, stored frozen, and applied systemically after thawing. Intravenous injection of Tf-PEG-coated polyplexes resulted in gene transfer to subcutaneous Neuro2a neuroblastoma tumors of syngeneic A/J mice; EGF-PEG-coated polyplexes were intravenously applied for targeting human hepatocellular carcinoma xenografts in SCID mice. In these models, luciferase marker gene expression levels in tumor tissues were 10- to 100-fold higher than in other organ tissues. Repeated systemic application of Tf-PEG-PEI/DNA complexes encoding tumor necrosis factor alpha (TNF-alpha) into tumor-bearing mice induced tumor necrosis and inhibition of tumor growth in three murine tumor models of different tissue origin (Neuro2a, M-3 or B16 melanoma). |
| |
Keywords: | |
|
|