Implications of functionally different synaptic inputs for neuronal gain and computational properties of fly visual interneurons |
| |
Authors: | Grewe Jan Matos Nélia Egelhaaf Martin Warzecha Anne-Kathrin |
| |
Affiliation: | Lehrstuhl für Neurobiologie, Universit?t Bielefeld, Bielefeld, Germany. jan.grewe@uni-bielefeld.de |
| |
Abstract: | Neurons embedded in networks are thought to receive synaptic inputs that do not drive them on their own, but modulate the responsiveness to driving input. Although studies on brain slices have led to detailed knowledge of how nondriving input affects dendritic integration, its origin and functional implications remain unclear. We tackle this issue using an ensemble of fly wide-field visual interneurons. These neurons offer the opportunity not only to combine in vivo recording techniques and natural sensory stimulation but also to interpret electrophysiological results in a behavioral context. By targeted manipulation of the animal's visual input we find a pronounced modulating impact of nondriving input, whereas functionally important cellular properties like direction tuning and the coding of pattern velocity are left almost unaffected. We propose that the integration of functionally different synaptic inputs is a mechanism that immanently equalizes the ensemble's sensitivity irrespective of the specific stimulus conditions. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
| 点击此处可从《Journal of neurophysiology》浏览原始摘要信息 |
|
点击此处可从《Journal of neurophysiology》下载全文 |