首页 | 本学科首页   官方微博 | 高级检索  
     


A vitamin D analogue,eldecalcitol, enhances expression of fast myosin heavy chain subtypes in differentiated C2C12 myoblasts
Authors:Hideo Saito  Koshi N. Kishimoto  Yu Mori  Hiroshi Okuno  Masahiko Tanaka  Eiji Itoi
Affiliation:Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Japan
Abstract:

Background

Several lines of evidence indicate that the active form of vitamin D has an anabolic effect on skeletal muscle. Eldecalcitol, an analogue of the active form of vitamin D, has the potential to increase bone density and decrease fracture risk. The objective of this study was to investigate the effect of eldecalcitol in C2C12 myogenic cells.

Methods

C2C12 cells were grown to confluency and the culture medium was replaced with low-glucose DMEM containing 2% horse serum. Eldecalcitol was added at a concentration of 1, 10 or 100 nM. Gene expression profiles of vitamin D receptor (VDR), MyoD, IGF-1, neonatal myosin heavy chain (MHC), and the fast MHC subtypes Ia, IIa, IIb and IId/x were analyzed by quantitative RT-PCR. Protein expression of MHC subtypes was evaluated by western blotting and immunostaining.

Results

Eldecalcitol upregulated gene expression of VDR, MyoD and IGF-1. Incubation with eldecalcitol in the absence of serum followed by the addition of serum after 1 h was associated with greater increases in the expression of these genes compared with co-incubation with eldecalcitol and serum. Gene expression of MHC subtypes IIa, IIb and IId/x was significantly increased by eldecalcitol. Protein expression of fast MHC subtypes was significantly increased by eldecalcitol at 1 and 10 nM.

Conclusion

Similar to the active form of vitamin D, eldecalcitol had an anabolic effect on fast MHC subtypes. Taking into account its pharmacokinetic profile, eldecalcitol is expected to be beneficial for the maintenance and improvement of muscle function in elderly individuals.
Keywords:Corresponding author. Fax: +81 22 717 7248.
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号