摘 要: | 目的:为了提高阿尔茨海默病(Alzheimer’s disease,AD)的分类效果,提出一种基于深度学习与多模态生理数据的AD分类方法。方法:选用阿尔茨海默病神经影像学计划(the Alzheimer’s Disease Neuroimaging Initiative,ADNI)数据库中AD患者、早期轻度认知障碍(early mild cognitive impairment,EMCI)患者、晚期轻度认知障碍(late mild cognitive impairment,LMCI)患者和正常认知(normal cognition,NC)受试者的多模态数据,利用改进的New_ResNet50网络提取受试者大脑MRI图像特征进行分类,利用3D-Unet-Attention网络对海马体图像进行分割后通过残差网络进行分类,利用多层感知机(multi-layer perceptron,MLP)网络基于患者的生理数据与海马体体积进行分类,并对3个网络给出的分类结果采用投票法确定最终分类结果。比较改进的New_ResNet50网络、3D-Unet-Attention网络分类模型与传统网络分类模型对...
|