首页 | 本学科首页   官方微博 | 高级检索  
     

载辛伐他汀PLGA/CPC复合骨髓基质干细胞构建组织工程骨的实验研究
引用本文:韩晓谦,董志恒,于祥茹,郭冲冲,谷旭,吴哲. 载辛伐他汀PLGA/CPC复合骨髓基质干细胞构建组织工程骨的实验研究[J]. 上海口腔医学, 2014, 23(1): 7-8
作者姓名:韩晓谦  董志恒  于祥茹  郭冲冲  谷旭  吴哲
作者单位:1.吉林大学口腔医院 口腔修复科, 吉林 长春 130021;
2.滨州医学院附属医院 口腔科, 山东 滨州 256600;
3.山东省聊城市人民医院 口腔科, 山东 聊城 252000
基金项目:吉林省自然科学基金(201215052)
摘    要:
目的:探讨载辛伐他汀PLGA/CPC复合骨髓基质干细胞(bone marrow stromal stem cells)构建组织工程骨的可行性,并筛选辛伐他汀的有效载药量。方法:采用溶剂浇铸—粒子沥滤技术结合相分离法,制备不同浓度(辛伐他汀质量分别为0.1、0.5、1 mg)的载辛伐他汀PLGA/CPC复合支架材料,扫描电镜观察孔隙率,绘制药物释放曲线;茜素红染色、I型胶原染色观察成骨诱导液和辛伐他汀对骨髓基质干细胞向成骨分化的作用;将第3代BMSCs经dil染色后,接种于不同浓度的复合支架材料上,扫描电镜、激光共聚焦显微镜观察细胞在支架上的黏附情况,CCK-8和碱性磷酸酶(ALP)检测对其增殖和分化作用;采用SPSS 18.0软件包对数据进行统计学分析。结果:支架材料孔隙率达90%以上,孔径平均200~300 μm,载药组药物持续缓慢释放,未见药物突释现象;经辛伐他汀和成骨诱导组I型胶原表达阳性,茜素红染色可见明显钙结节;4组支架材料与细胞黏附性较好,0.5 mg组细胞生长状态最佳。CCK-8和ALP检测0.5 mg组能够明显促进细胞的增殖和分化。结论:辛伐他汀和成骨诱导液联合利用,能够更有效地促进BMSCs向成骨分化;载辛伐他汀PLGA/CPC复合支架材料是理想的组织工程支架材料;载0.5 mg辛伐他汀PLGA/CPC支架材料能够有效促进BMSCs的增殖和分化。

关 键 词:PLGA/CPC  辛伐他汀  骨髓基质干细胞  骨组织工程  
收稿时间:2013-05-08
修稿时间:2013-06-20

Experimental study of tissue-engineered bone constructed with simvastatin carried by PLGA/CPC and bone marrow stromal cells
HAN Xiao-qian,DONG Zhi-heng,YU Xiang-ru,GUO Chong-chong,GU Xu,WU Zhe. Experimental study of tissue-engineered bone constructed with simvastatin carried by PLGA/CPC and bone marrow stromal cells[J]. Shanghai journal of stomatology, 2014, 23(1): 7-8
Authors:HAN Xiao-qian  DONG Zhi-heng  YU Xiang-ru  GUO Chong-chong  GU Xu  WU Zhe
Affiliation:1.Department of Prosthodontics, Hospital of Stomatology, Jilin University. Changchun 130021, Jilin Province;
2.Department of Stomatology, Affiliated Hospital to Binzhou Medical College. Binzhou 2566003, Shandong Province;
3.Department of Stomatology, Liaocheng People’s Hospital. Liaocheng 252000, Shandong Province, China
Abstract:
PURPOSE: To study the feasibility of tissue engineered bone constructed with simvastatin carried by PLGA/CPC and bone marrow stromal cells (BMSCs) and screen the effective drug loading of simvastatin. METHODS: Solvent casting-particle leaching technology combined with the phase separation process was used to prepare the different concentrations (simvastatin mass: 0.1, 0.5, 1 mg) of simvastatin carried by PLGA/CPC composite scaffold materials. Scanning electron microscopy was used to observe the porosity and drug release curve was drawn; Alizarin red staining and type I collagen staining were applied to observe the effect of osteogenic medium and simvastatin on the role of BMSCs to the osteogenetic differentiation. The induced passage 3 cells after dil staining were mixed with the composite scaffold material to a complex. Scanning electron microscopy and laser confocal microscope were used to observe the adhesion on the complex. CCK-8 and alkaline phosphatase (ALP) were applied to observe the proliferation and differentiation. SPSS 18.0 software package was used for statistical analysis. RESULTS: The scaffold porosity was more than 90% with an average aperture of 200-300 μm. The drug released slowly. There was no obvious interpretation. Type I collagen showed positive expression. Alizarin red staining proofed the formation of mineralization nodules in group which was induced with the conditional medium and simvastatin. 0.5 mg group showed cells adhered to the inner surface of the scaffold material and could significantly promote the proliferation and differentiation of cells. CONCLUSIONS: Combination of simvastatin and osteogenic medium can effectively promote the differentiation of BMSCs. Simvastatin carried by PLGA/CPC scaffold materials is an ideal tissue engineering scaffold material. PLGA/CPC scaffold containing 0.5 mg simvastatin can effectively promote the proliferation and differentiation of BMSCs.
Keywords:PLGA/CPC  Simvastatin  Bone marrow stromal stem cells  Bone tissue engineering  
点击此处可从《上海口腔医学》浏览原始摘要信息
点击此处可从《上海口腔医学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号