摘 要: | 目的 评价基于双参数MRI的深度学习自动分割与机器学习分类模型,探索其在临床显著性前列腺癌(CSPC)诊断中的应用。方法 纳入409例前列腺患者MRI检查资料,在DWI、ADC和T2WI中应用VB-Net模型分别进行病灶自动分割和腺体自动分割,生成感兴趣区(ROI),病灶自动分割时将分割阈值设置为不同数值分别重复进行。分别提取病灶ROI和腺体ROI中的纹理特征,进行Lasso特征选择,建立、训练随机森林、支持向量机和Logistic回归模型并进行验证。结果 病灶分割中分割阈值分别为0.9、0.5、0.1时,假阴性率分别为0.462、0.273、0.182,假阳性率分别为0.134、0.419、0.661;当分割阈值设为0.5,病灶自动分割后进行纹理分析和机器学习分类,3种模型ROC曲线的AUC为0.76~0.792;腺体分割后进行纹理分析和机器学习分类,3种模型ROC曲线的AUC为0.827~0.855。结论 采用基于前列腺bp-MRI的VB-Net模型对CSPC病灶具有一定的自动分割、分类能力,结合进一步的机器学习能较好地诊断CSPC;VB-Net模型对腺体自动...
|