首页 | 本学科首页   官方微博 | 高级检索  
     


Expression of L-Selectin (CD62L), CD44, and CD25 on activated bovine T cells
Authors:Waters W R  Rahner T E  Palmer M V  Cheng D  Nonnecke B J  Whipple D L
Affiliation:Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, USDA Agricultural Research Service, Ames, Iowa 50010, USA. rwaters@nadc.ars.usda.gov
Abstract:
Mycobacterium bovis infection of cattle represents a natural host-pathogen interaction and, in addition to its economic and zoonotic impact, represents a model for human tuberculosis. Extravasation and trafficking of activated lymphocytes to inflammatory sites is modulated by differential expression of multiple surface adhesion molecules. However, effects of M. bovis infection on adhesion molecule expression have not been characterized. To determine these changes, peripheral blood mononuclear cells from M. bovis-infected cattle were stimulated with M. bovis purified protein derivative (PPD) or pokeweed mitogen (PWM) and evaluated concurrently for proliferation and activation marker expression. Stimulation with PPD or PWM increased CD25 and CD44 mean fluorescence intensity (MFI) and decreased CD62L MFI on CD4(+) cells from infected animals. CD62L MFI on PPD- and PWM-stimulated gammadelta T-cell receptor-positive (TCR(+)) and CD8(+) cells was also reduced compared to that of nonstimulated gammadelta TCR(+) and CD8(+) cells. Using a flow cytometry-based proliferation assay, it was determined that proliferating cells, regardless of lymphocyte subset, exhibited increased expression of CD25 and CD44 and decreased expression of CD62L compared to cells that had not proliferated. In contrast to proliferation, activation-induced apoptosis of CD4(+) cells resulted in a significant down regulation of CD44 expression. Lymphocytes obtained from lungs of M. bovis-infected cattle also had reduced expression of CD44 compared to lymphocytes from lungs of noninfected cattle. These alterations in surface molecule expression upon activation likely impact trafficking to sites of inflammation and the functional capacity of these cells within tuberculous granulomas.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号