首页 | 本学科首页   官方微博 | 高级检索  
     


The effect of K(atp)channel activation on myocardial cationic and energetic status during ischemia and reperfusion: role in cardioprotection
Authors:Fukuda H  Luo C S  Gu X  Guo L  Digerness S B  Li J  Pike M M
Affiliation:University of Alabama at Birmingham, Department of Medicine, Division of Cardiovascular Disease, 703 19th Street South, Birmingham, AL 35294, USA.
Abstract:
The role of cation and cellular energy homeostasis in ATP-sensitive K(+)(K(ATP)) channel-induced cardioprotection is poorly understood. To evaluate this, rapidly interleaved(23)Na and(31)P NMR spectra were acquired from isolated rat hearts exposed to direct K(ATP)channel activation from nicorandil or pinacidil. Nicorandil attenuated ATP depletion and intracellular Na(+)(Na(+)(i)) accumulation, delayed the progression of acidosis during zero-flow ischemia and prevented ischemic contracture. The K(ATP)channel inhibitor 5-hydroxydecanoate abolished these effects. Pinacidil did not alter Na(+)(i)accumulation, ATP depletion or pH during ischemia under the conditions employed. Both agonists greatly improved the post-ischemic functional recovery. Both agonists also dramatically improved the rate and extent of the reperfusion recoveries of Na(+)(i), PCr and ATP. The Na(+)(i)and PCr reperfusion recovery rates were tightly correlated, suggesting a causal relationship. Separate atomic absorption tissue Ca(2+)measurements revealed a marked reperfusion Ca(2+)uptake, which was reduced two-fold by pinacidil. In conclusion, these results clearly indicate that while K(ATP)channel-induced metabolic alterations can vary, the functional cardioprotection resulting from this form of pharmacological preconditioning does not require attenuation of acidosis, cellular energy depletion, or Na(+)(i)accumulation during ischemia. Rather than preservation of cationic/energetic status during ischemia, the cardioprotective processes may involve a preserved capability for its rapid restoration during reperfusion. The enhanced reperfusion Na(+)(i)recovery may be enabled by the improved reperfusion cellular energy state. This accelerated Na(+)(i)recovery could play an important cardioprotective role via a potential causal relationship with the reduction of reperfusion tissue Ca(2+)uptake and resultant reperfusion injury.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号