首页 | 本学科首页   官方微博 | 高级检索  
     


The protective effect of M40401, a superoxide dismutase mimetic, on post-ischemic brain damage in Mongolian gerbils
Authors:Vincenzo Mollace  Michelangelo Iannone  Carolina Muscoli  Ernesto Palma  Teresa Granato  Andrea Modesti  Robert Nisticò  Domenicantonio Rotiroti  Daniela Salvemini
Affiliation:1. Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, Zürich, 8057, CH, Switzerland
Abstract:

Background

Amino acids in the β subunit contribute to the action of general anaesthetics on GABAA receptors. We have now characterized the phenotypic effect of two β subunit mutations in the most abundant GABAA receptor subtype, α1β2γ2.

Results

The β2(N265M) mutation in M2 decreased the modulatory actions of propofol, etomidate and enflurane, but not of alphaxalone, while the direct actions of propofol, etomidate and alphaxalone were impaired. The β2(M286W) mutation in M3 decreased the modulatory actions of propofol, etomidate and enflurane, but not of alphaxalone, whereas the direct action of propofol and etomidate, but not of alphaxalone, was impaired.

Conclusions

We found that the actions of general anaesthetics at α1β2(N265M)γ2 and α1β2(M286W)γ2 GABAA receptors are similar to those previously observed at α2β3(N265M)γ2 and α2β3(M286W)γ2 GABAA recpetors, respectively, with the notable exceptions that the direct action of propofol was decreased in α1β2(M286W)γ2 receptors but indistinguishable form wild type in α2β3(M286W)γ2 receptors and that the direct action of alphaxalone was decreased in α1β2(N265M)γ2 but not α2β3(N265M)γ2 receptors and indistinguishable form wild type in α1β2(M286W)γ2 receptors but increased in α2β3(M286W)γ2 receptors. Thus, selected phenotypic consequences of these two mutations are GABAA receptor subtype-specific.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号