Coupled experiment/finite element analysis on the mechanical response of porcine brain under high strain rates |
| |
Authors: | Prabhu R Horstemeyer M F Tucker M T Marin E B Bouvard J L Sherburn J A Liao Jun Williams Lakiesha N |
| |
Affiliation: | aCenter for Advanced Vehicular Systems, Mississippi State University, MS 39759, United States;bMechanical Engineering Department, Mississippi State University, MS 39762, United States;cGroup MST-8, Structure/Property Relations, MS G755, Los Alamos National Laboratory, Los Alamos, NM 87545, United States;dUS Army Engineer Research and Development Center, Vicksburg, MS 39180, United States;eAgricultural & Biological Engineering Department, Mississippi State University, MS 39762, United States |
| |
Abstract: | ![]() This paper presents a coupled experimental/modeling study of the mechanical response of porcine brain under high strain rate loading conditions. Essentially, the stress wave propagation through the brain tissue is quantified. A Split-Hopkinson Pressure Bar (SPHB) apparatus, using a polycarbonate (viscoelastic) striker bar was employed for inducing compression waves for strain rates ranging from 50 to 750 s−1. The experimental responses along with high speed video showed that the brain tissue’s response was nonlinear and inelastic. Also, Finite Element Analysis (FEA) of the SHPB tests revealed that the tissue underwent a non-uniform stress state during testing when glue is used to secure the specimen with the test fixture. This result renders erroneous the assumption of uniaxial loading. In this study, the uniaxial volume averaged stress–strain behavior was extracted from the FEA to help calibrate inelastic constitutive equations. |
| |
Keywords: | Abbreviations: SHPB, Split-Hopkinson Pressure Bar FEA, Finite Element Analysis CDC, Center for Disease Control MSU, Mississippi State University CAVS, Center for Advanced Vehicular Systems PBS, Phosphate Buffered Saline FE, Finite Element |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|