Potential of Novel Antimicrobial Peptide P3 from Bovine Erythrocytes and Its Analogs To Disrupt Bacterial Membranes In Vitro and Display Activity against Drug-Resistant Bacteria in a Mouse Model |
| |
Authors: | Qinghua Zhang Yanzhao Xu Qing Wang Bolin Hang Yawei Sun Xiaoxiao Wei Jianhe Hu |
| |
Affiliation: | Key Discipline Open Laboratory of Animal Viral Disease Control and Residual Analysis of Henan Province, Department of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China |
| |
Abstract: | With the emergence of many antibiotic-resistant strains worldwide, antimicrobial peptides (AMPs) are being evaluated as promising alternatives to conventional antibiotics. P3, a novel hemoglobin peptide derived from bovine erythrocytes, exhibited modest antimicrobial activity in vitro. We evaluated the antimicrobial activities of P3 and an analog, JH-3, both in vitro and in vivo. The MICs of P3 and JH-3 ranged from 3.125 μg/ml to 50 μg/ml when a wide spectrum of bacteria was tested, including multidrug-resistant strains. P3 killed bacteria within 30 min by disrupting the bacterial cytoplasmic membrane and disturbing the intracellular calcium balance. Circular dichroism (CD) spectrometry showed that P3 assumed an α-helical conformation in bacterial lipid membranes, which was indispensable for antimicrobial activity. Importantly, the 50% lethal dose (LD50) of JH-3 was 180 mg/kg of mouse body weight after intraperitoneal (i.p.) injection, and no death was observed at any dose up to 240 mg/kg body weight following subcutaneous (s.c.) injection. Furthermore, JH-3 significantly decreased the bacterial count and rescued infected mice in a model of mouse bacteremia. In conclusion, P3 and an analog exhibited potent antimicrobial activities and relatively low toxicities in a mouse model, indicating that they may be useful for treating infections caused by drug-resistant bacteria. |
| |
Keywords: | |
|
|