首页 | 本学科首页   官方微博 | 高级检索  
检索        


Gene signatures of SARS-CoV/SARS-CoV-2-infected ferret lungs in short- and long-term models
Abstract:Coronaviruses (CoVs) consist of six strains, and the severe acute respiratory syndrome coronavirus (SARS-CoV), newly found coronavirus (SARS-CoV-2) has rapidly spread leading to a global outbreak. The ferret (Mustela putorius furo) serves as a useful animal model for studying SARS-CoV/SARS-CoV-2 infection and developing therapeutic strategies. A holistic approach for distinguishing differences in gene signatures during disease progression is lacking. The present study discovered gene expression profiles of short-term (3 days) and long-term (14 days) ferret models after SARS-CoV/SARS-CoV-2 infection using a bioinformatics approach. Through Gene Ontology (GO) and MetaCore analyses, we found that the development of stemness signaling was related to short-term SARS-CoV/SARS-CoV-2 infection. In contrast, pathways involving extracellular matrix and immune responses were associated with long-term SARS-CoV/SARS-CoV-2 infection. Some highly expressed genes in both short- and long-term models played a crucial role in the progression of SARS-CoV/SARS-CoV-2 infection, including DPP4, BMP2, NFIA, AXIN2, DAAM1, ZNF608, ME1, MGLL, LGR4, ABHD6, and ACADM. Meanwhile, we revealed that metabolic, glucocorticoid, and reactive oxygen species-associated networks were enriched in both short- and long-term infection models. The present study showed alterations in gene expressions from short-term to long-term SARS-CoV/SARS-CoV-2 infection. The current result provides an explanation of the pathophysiology for post-infectious sequelae and potential targets for treatment.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号