首页 | 本学科首页   官方微博 | 高级检索  
     


Myriocin, a serine palmitoyltransferase inhibitor, suppresses tumor growth in a murine melanoma model by inhibiting de novo sphingolipid synthesis
Authors:Lee Youn-Sun  Choi Kyeong-Mi  Lee Seunghyun  Sin Dong-Mi  Lim Yong  Lee Yong-Moon  Hong Jin-Tae  Yun Yeo-Pyo  Yoo Hwan-Soo
Affiliation:College of Pharmacy and Medical Research Center; Chungbuk National University, Cheongju, Korea.
Abstract:
Advanced melanoma is the most virulent form of cancer and has a poor prognosis. In a previous study, myriocin, an inhibitor of serine palmitoyltransferase, was found to suppress melanoma cell proliferation by cell cycle arrest at the G 2/M phase through decreased sphingolipid levels and increased p53 and p21 (waf1/cip1) expression. ( 1) In the present study, myriocin (1 mg/kg, every other day for 3 weeks) was administered intradermally or intraperitoneally to melanoma mice. Tumor formation was significantly inhibited by intradermal and intraperitoneal administration of myriocin. The expression of Cdc25C, Cdc2 and cyclin B1 was decreased in tumor tissues from myriocin-treated mice, while the expression of p53 and p21 (waf1/cip1) was increased compared with that of the controls. The levels of sphingolipids in serum, liver and tumor tissue from myriocin-treated mice were decreased compared with those of controls. The decreased levels of sphingolipids in serum and liver of melanoma mice treated with myriocin suggests that myriocin may be accessible to tumor tissues of advanced melanoma. Taken together, the suppression of sphingolipid synthesis by myriocin inhibits the expression of Cdc25C or activates the expression of p53 and p21 (waf1/cip1) . This is followed by Cdc2 and cyclin B1 inhibition which results in the suppression of tumor growth.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号