首页 | 本学科首页   官方微博 | 高级检索  
     

转化生长因子β1基因修饰的间充质干细胞/仿生基质材料的体外复合培养
引用本文:Guo XD,Du JY,Zheng QX,Liu Y,Duan DY,Quan DP,Lu ZJ. 转化生长因子β1基因修饰的间充质干细胞/仿生基质材料的体外复合培养[J]. 中国医学科学院学报, 2001, 23(4): 373-377
作者姓名:Guo XD  Du JY  Zheng QX  Liu Y  Duan DY  Quan DP  Lu ZJ
作者单位:华中科技大学同济医学院附属协和医院骨科 武汉 430022
摘    要:目的 探讨转化生长因子β1(TGF-β1)基因转染对间充质干细胞(MSCs)增殖分化的影响,评价涂覆多聚赖氨酸(PLYS)的聚DL乳酸(PDLIA)仿生基质材料能否作为关节软骨组织工程学研究的支架材料。方法 将组织工程学与分子生物学有机结合,体外将具有多重生物学效应的TGF-β1基因转入关节软骨组织工程首选种子细胞--间充质干细胞(MSCs),并与表面涂覆PLYS的PDLLA可降解三维多孔基质材料体外复合培养。以单纯空载体转染MSCs为对照,通过扫描电镜等方法观察种子细胞的粘附、增殖及分化等情况。结果 基质材料孔隙率为88%,其中孔径为150-200μm的有效孔占80%。所有细胞增能很好地粘附于基质材料上,其中TGF-β1基因修饰的MSCs增殖分化活性明显优于对照组。结论 利用扮子组织工程学原理可使TGF-β1持续高效发挥作用,使提高关节软骨缺损的修复质量和远期疗效成为可能。涂覆PLYS的PDLLA仿生基质材料不仅具有良好的生物相容性和结构相容性,而且具有更好的表面相容性和生物学活性,在一定程度上解决了细胞--基质材料之间非的界面不相容问题,是关节软骨缺损修复的良好基质材料。

关 键 词:关节软骨缺损修复 分子组织工程学 基因转染 间充质干细胞 转化生长因子β1 聚DL乳酸
修稿时间:2000-10-24

Neocartilage formation in vitro using transduced mesenchymal stem cells cultured on biomimetic biodegradable polymer scaffolds
Guo X D,Du J Y,Zheng Q X,Liu Y,Duan D Y,Quan D P,Lu Z J. Neocartilage formation in vitro using transduced mesenchymal stem cells cultured on biomimetic biodegradable polymer scaffolds[J]. Acta Academiae Medicinae Sinicae, 2001, 23(4): 373-377
Authors:Guo X D  Du J Y  Zheng Q X  Liu Y  Duan D Y  Quan D P  Lu Z J
Affiliation:Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China. guo_xdcn@yahoo.com.cn
Abstract:OBJECTIVE: To investigate the effect of transforming growth factor (TGF) beta 1 gene transfection on the growth of mesenchymal stem cells(MSCs) and to evaluate a new biomimetic biodegradable polymer as scaffolds for applications in articular cartilage tissue engineering. METHODS: Principles of tissue engineering were combined organically with principles of gene therapy to produce cultured periosteum-derived MSCs transduced with the full-length rat TGF-beta 1 cDNA in vitro. These cells were then seeded onto three-dimensional porous poly-DL-lactide scaffolds modified with poly-L-lysine that mimicked cell-binding domains found on natural extracellular matrix to promote specific cell adhesion. The adhesion, proliferation, and differentiation of the transfected MSCs were examined with scanning electron microscope within 2 weeks. RESULTS: All cells adhered to the biomimetic matrices well, but more cartilage-like tissue was formed for TGF-beta 1 gene modified MSCs/scaffolds composites than for the control groups. Transfer of gene encoding TGF-beta 1 to MSCs promoted its proliferation and differentiation significantly. CONCLUSIONS: The TGF-beta 1 gene transduced MSCs/biomimetic matrix composites used in this study was the first attempt to apply the principles of molecular tissue engineering for articular cartilage repair. This new molecular tissue engineering approach could be of potential benefit to repair damaged articular cartilage, especially in osteoarthritis. The new biomimetic biodegradable polymer matrices modified with biomolecules not only have good structural compatibility, but also have better interfacial compatibility and bioactivity, and can be used as scaffolds for articular cartilage tissue engineering.
Keywords:
本文献已被 维普 万方数据 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号