首页 | 本学科首页   官方微博 | 高级检索  
     


Immune‐checkpoint molecules on regulatory T‐cells as a potential therapeutic target in head and neck squamous cell cancers
Authors:Susumu Suzuki  Tetsuya Ogawa  Rui Sano  Taishi Takahara  Daisuke Inukai  Satou Akira  Hiromi Tsuchida  Kazuhiro Yoshikawa  Ryuzo Ueda  Toyonori Tsuzuki
Abstract:
Immune‐checkpoint inhibitors improve the survival of head and neck squamous cell carcinoma (HNSCC) patients. Although recent studies have demonstrated that the tumor immune microenvironment (TIME) has critical roles in immunotherapy, the precise mechanisms involved are unclear. Therefore, further investigations of TIME are required for the improvement of immunotherapy. The frequency of effector regulatory T‐cells (eTregs) and the expression of immune‐checkpoint molecules (ICM) on eTregs and conventional T‐cells (Tconvs) both in peripheral blood lymphocytes (PBL) and tumor‐infiltrating lymphocytes (TIL) from HNSCC patients were analyzed by flow cytometry and their distributions were evaluated by multi‐color immunofluorescence microscopy. High frequency eTreg infiltration into HNSCC tissues was observed and high expressions of CD25, FOXP3, stimulatory‐ICM (4‐1BB, ICOS, OX40 and GITR) and inhibitory‐ICM (programmed cell death‐1 [PD‐1] and cytotoxic T‐lymphocyte‐associated protein‐4 [CTLA‐4]) were found on invasive eTregs. In contrast, the expression of stimulatory‐ICM on Tconvs was low and the expression of inhibitory‐ICM was high. In addition, ICM‐ligands (programmed cell death‐1 [PD‐L1], galectin‐9 and CEACAM‐1) were frequently expressed on cancer cells. PD‐L1 and galectin‐9 were also expressed on macrophages. PD‐1+ T‐cells interacted with PD‐L1+ cancer cells or PD‐L1+ macrophages. This suggested that in TIL, eTregs are highly activated, but Tconvs are exhausted or inactivated by eTregs and immune‐checkpoint systems, and ICM and eTregs are strongly involved in the creation of an immunosuppressive environment in HNSCC tissues. These suggested eTreg targeting drugs are expected to be a combination partner with immune‐checkpoint inhibitors that will improve immunotherapy of HNSCC.
Keywords:head and neck squamous cell carcinoma  immune checkpoint  immunotherapy  regulatory T‐cell  tumor immune microenvironment
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号