首页 | 本学科首页   官方微博 | 高级检索  
检索        


Effects of radioisotopes on the accuracy of dual-energy X-ray absorptiometry for bone densitometry.
Authors:Bryon Mueller  Michael K O'Connor
Institution:Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA.
Abstract:Nuclear medicine procedures are often performed in close-time proximity to bone densitometry studies. The purpose of this study was to determine the effects of various radioisotopes on the accuracy of bone mineral density (BMD) measurements performed using dual-energy x-ray absorptiometry (DEXA) systems. We evaluated two DEXA scanners: the Hologic QDR4500 and the Lunar Prodigy. The effects of various activities of Tc-99m, Tl-201, Ga-67 and I-131 on BMD were assessed by placing vials or syringes containing the appropriate isotope above or below a simulated spine (average BMD = 1.1 g/cm2) embedded in a lucite block. We also placed a spine phantom (average BMD = 2.0 g/cm2) in a water bath containing various concentrations of Tc-99m. Maximum activities evaluated were as follows: Tc-99m, 80 mCi; I-131, 50 mCi; Tl-201, 66 mCi; Ga-67, 20 mCi. For the Hologic QDR4500 system, irrespective of the radioisotope or activity, we found no significant effect of adjacent activity on measured BMD on this system. For the Lunar Prodigy system, the effects of adjacent activity on BMD were found to be dependent on source location, strength, and radioisotope. For sources placed beneath the solid lucite phantom, BMD decreased by approx 0.5%/10 mCi of activity for all isotopes. In general, for sources placed above the lucite phantom, the BMD decreased by 1.6-4.0%/10 mCi of activity, depending on location. The exception was Tl-201, where BMD increased by 0.5-2.5%/10 mCi, depending on location. With the high-density spine in the water phantom, the effects of adjacent activity were more pronounced than in the standard density spine in the lucite block. For a distributed Tc-99m source, the BMD decreased by 1.7%/10 mCi. The effect of radioactivity on DEXA measurements is system dependent. In general, adjacent activity results in a reduction in apparent BMD. The magnitude of the effect increases with increasing BMD and is dependent on the location of the activity.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号