首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of Microwave-Assisted Synthesis and Sintering of Lead-Free KNL-NTS Ceramics
Authors:Anggel Lagunas-Chavarrí  a,Marí  a Guadalupe Navarro-Rojero,Marí  a Dolores Salvador,Rut Benavente,Jose Manuel Catalá  -Civera,Amparo Borrell
Affiliation:1.Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain; (A.L.-C.); (M.D.S.); (A.B.);2.Advance Technology Centre (CIATEQ A.C.), Av. del Retablo 150, Col. Constituyentes Fovissste, Querétaro 76150, Mexico;3.Instituto de las Tecnologías de la Información y Comunicaciones (ITACA), Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain;
Abstract:
Lead-free piezoelectric powders (K0.44Na0.52Li0.04)(Nb0.82Ta0.10Sb0.04)O3 were obtained by conventional and microwave-assisted reactive heating. Firstly, the synthesis of the material was carried out following the mixed oxide route and employing both traditional methods and microwave technology. Thermogravimetry, X-ray diffraction, field emission scanning electron microscopy and electrical properties analyses were evaluated. X-ray diffraction of the powders calcined by the microwave process shows the formation of perovskite structure with orthorhombic geometry, but it is possible to observe the presence of other phases. The presence of the secondary phases found can have a great influence on the heating rate during the synthesis on which the kinetics of the reaction of formation of the piezoelectric compound depend. The calcined powder was sintered at different temperatures by conventional and non-conventional processes. The microstructure of the ceramics sintered by microwave at 1050 °C for 10 min shows perovskite cubes with regular geometry, of size close to 2–5 µm. However, the observed porosity (~8%), the presence of liquid phase and secondary phases in the microstructure of the microwave sintered materials lead to a decrease of the piezoelectric constant. The highest d33 value of 146 pC/N was obtained for samples obtained by conventional at 1100 °C 2 h compared to samples sintered by microwave at 1050 °C 10 min (~15 pC/N).
Keywords:KNL-NTS ceramics   synthesis   calcination   microwave processing   piezoelectric properties
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号