首页 | 本学科首页   官方微博 | 高级检索  
     


Short-term enzyme replacement in the murine model of Sanfilippo syndrome type B
Authors:Yu W H  Zhao K W  Ryazantsev S  Rozengurt N  Neufeld E F
Affiliation:Department of Biological Chemistry, Brain Research Institute, Los Angeles, California 90095-1737, USA.
Abstract:
The Sanfilippo syndrome type B (MPS III B) is an autosomal recessive disease caused by deficiency of alpha-N-acetylglucosaminidase (EC 3. 2.1.50), one of the lysosomal enzymes required for the degradation of heparan sulfate. The disease is characterized by profound neurodegeneration but relatively mild somatic manifestations, and is usually fatal in the second decade. A mouse model had been generated by disruption of the Naglu gene in order to facilitate the study of pathogenesis and the development of therapy for this currently untreatable disease. Recombinant human alpha-N-acetylglucosaminidase (rhNAGLU) was prepared from secretions of Lec1 mutant Chinese hamster ovary cells. The enzyme, which has only unphosphorylated high-mannose carbohydrate chains, was endocytosed by mouse peritoneal macrophages via mannose receptors, with half-maximal uptake at ca. 10(-7) M. When administered intravenously to 3 month-old mice, rhNAGLU was taken up avidly by liver and spleen but marginally if at all by thymus, lung, kidney, heart, and brain (in order of diminishing uptake). The half-life of the enzyme was 2.5 days in liver and spleen. Immunohistochemistry and electron microscopy showed that only macrophages were involved in enzyme uptake and correction in these two organs, yet the storage of glycosaminoglycan was reduced to almost normal levels. The results show that the macrophage-targeted rhNAGLU can substantially reduce the body burden of glycosaminoglycan storage in the mouse model of Sanfilippo syndrome III B.
Keywords:Sanfilippo syndrome   MPS III B   α  -N-acetylglucosaminidase   endocytosis   lysosomes   glycosaminoglycan   macrophage targeting   mouse model
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号